CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2019; 54(06): 692-696
DOI: 10.1055/s-0039-1697019
Artigo Original
Sociedade Brasileira de Ortopedia e Traumatologia. Published by Thieme Revnter Publicações Ltda Rio de Janeiro, Brazil

Oral Administrations of Hancornia speciosa Gomes Latex Do Not Increase Bone Neoformation[*]

Artikel in mehreren Sprachen: português | English
1   Departamento de Morfologia, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brasil
,
Rafaela Mariano Bereta
2   Departamento de Saúde Bucal, Escola Técnica Qualificar, Florianópolis, SC, Brasil
,
Sônia Maria Stefano Piedade
3   Departamento de Ciências Exatas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brasil
,
Pedro Duarte Novaes
1   Departamento de Morfologia, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brasil
› Institutsangaben
Weitere Informationen

Publikationsverlauf

04. Juni 2018

08. August 2018

Publikationsdatum:
25. September 2019 (online)

Abstract

Objective The present work aimed to evaluate the systemic effect of H. speciosa latex on bone neoformation.

Methods For this, the latex was collected and diluted to 3% and 50%. A total of 28 Wistar rats were submitted to surgery to create a 5 mm diameter defect in the parietal bone. This experiment was conducted in 2 different periods: 1 and 2. For each period, the rats were divided into 3 groups: Control Group, Latex3 Group, and Latex50 Group, which received, respectively, daily administrations of 0.5 mL of distilled water, latex to 3% and latex to 50% by gavage, orally. The rats of periods 1 and 2 were euthanized, respectively, 15 and 30 days after the surgery, and the calvaria was collected. The results were analyzed using the ANOVA and Tukey tests; the significance level was 0.05.

Results We show that, in each analyzed period, the experimental groups had the same amount of newly formed bone in the calvaria defect.

Conclusion We conclude that daily and oral administrations of H. speciosa latex to 3% and to 50% over a period of 15 and 30 days does not contribute to the increase of the area of the newly formed bone in the calvaria defect.

* Study developed at the Department of Morphology, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.


 
  • Referências

  • 1 Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285 (33) 25103-25108
  • 2 Valenti MT, DalleCarbonare L, Mottes M. Osteogenic Differentiation in Healthy and Pathological Conditions. Int J Mol Sci 2016; 18 (01) E41
  • 3 Florence NT, Huguette ST, Hubert DJ. , et al. Aqueous extract of Peperomia pellucida (L.) HBK accelerates fracture healing in Wistar rats. BMC Complement Altern Med 2017; 17 (01) 188
  • 4 Guyton AC, Hall JE. Text book of medical physiology. 11th ed. Philadelphia: Elsevier Saunders; 2006
  • 5 Thurairajah K, Broadhead ML, Balogh ZJ. Trauma and Stem Cells: Biology and Potential Therapeutic Implications. Int J Mol Sci 2017; 18 (03) E577
  • 6 Ereno C, Guimarães SA, Pasetto S. , et al. Latex use as an occlusive membrane for guided bone regeneration. J Biomed Mater Res A 2010; 95 (03) 932-939
  • 7 Walmsley GG, Ransom RC, Zielins ER. , et al. Stem Cells in Bone Regeneration. Stem Cell Rev 2016; 12 (05) 524-529
  • 8 Balabanian CA, Coutinho-Netto J, Lamano-Carvalho TL, Lacerda SA, Brentegani LG. Biocompatibility of natural latex implanted into dental alveolus of rats. J Oral Sci 2006; 48 (04) 201-205
  • 9 ManfrinArnez MF, Xavier SP, Pinto Faria PE. , et al. Implant osseointegration in circumferential bone defects treated with latex-derived proteins or autogenous bone in dog's mandible. Clin Implant Dent Relat Res 2012; 14 (01) 135-143
  • 10 Issa JP, Defino HL, Pereira YC. , et al. Bone repair investigation using rhBMP-2 and angiogenic protein extracted from latex. Microsc Res Tech 2012; 75 (02) 145-152
  • 11 Issa JP, Defino HL, Sebald W. , et al. Biological evaluation of the bone healing process after application of two potentially osteogenic proteins: an animal experimental model. Gerodontology 2012; 29 (04) 258-264
  • 12 Dos Santos Neves J, Franchin M, Rosalen PL. , et al. Evaluation of the osteogenic potential of Hancorniaspeciosa latex in rat calvaria and its phytochemical profile. J Ethnopharmacol 2016; 183: 151-158
  • 13 Silva Junior JF. A cultura da mangaba. Rev Bras Frutic 2006; 26 (01) 1-192
  • 14 Molinaro EM, Caputo L, Amendoeira R. Conceitos e Métodos para a formação de profissionais em laboratórios de saúde. Rio de Janeiro: EPSJV; 2009 . [acesso em 2018 maio 31]. Disponível em: www.fiocruz.br/ioc/media/Livropoli.pdf
  • 15 Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 2011; 45 (01) 14-24
  • 16 Lin Z, Fateh A, Salem DM, Intini G. Periosteum: biology and applications in craniofacial bone regeneration. J Dent Res 2014; 93 (02) 109-116
  • 17 Florencio-Silva R, Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res Int 2015; 2015: 421746
  • 18 Li F, Sun X, Ma J. , et al. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway. Biochem Biophys Res Commun 2014; 452 (03) 629-635
  • 19 Zhou RP, Lin SJ, Wan WB. , et al. Chlorogenic Acid Prevents Osteoporosis by Shp2/PI3K/Akt Pathway in Ovariectomized Rats. PLoS One 2016; 11 (12) e0166751