CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2019; 38(04): 297-307
DOI: 10.1055/s-0039-1696708
Review Article | Artigo de Revisão
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Neurosurgery Simulators Developed for Neurosurgical Training in Brazil: A Systematic Review

Simuladores de neurocirurgia desenvolvidos para o treinamento neurocirúrgico no Brasil: Revisão sistemática da literatura
1   Department of Neurosurgery, Instituto de Neurologia de Goiania, Goiânia, GO, Brazil
3   Faculty of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil
,
Nayara Matos Pereira
2   Department of Neurosurgery, Hospital Geral de Goiânia, Goiânia, GO, Brazil
,
João Henrique Vieira Pedroso
3   Faculty of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil
,
Vinicius da Silva Oliveira
3   Faculty of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil
,
Marcelo Ribeiro da Rocha
3   Faculty of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil
,
Lucas Wilson Matos Gomes
3   Faculty of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil
,
Mariana Vieira Martins Sampaio Drummond
1   Department of Neurosurgery, Instituto de Neurologia de Goiania, Goiânia, GO, Brazil
,
Ana Luiza Morais Avelar Drummond
1   Department of Neurosurgery, Instituto de Neurologia de Goiania, Goiânia, GO, Brazil
,
Marcelo Magaldi Ribeiro Oliveira
4   Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
,
Marco Tulio Antonio Garcia-Zapata
3   Faculty of Medicine, Universidade Federal de Goiás, Goiânia, GO, Brazil
› Author Affiliations
Further Information

Publication History

16 May 2019

01 July 2019

Publication Date:
03 September 2019 (online)

Abstract

Introduction Simulation in neurosurgery is a growing trend in medical residency programs around the world due to the concerns there are about patient safety and the advancement of surgical technology. Simulation training can improve motor skills in a safe environment before the actual setting is initiated in the operating room. The aim of this review is to identify articles that describe Brazilian simulators, their validation status and the level of evidence (LoE).

Methodology This study was conducted using the Preferred Reported Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A search was performed in the Medline, Scielo, and Cochrane Library databases. The studies were evaluated according to the Medical Education Research Quality Instrument (MERSQI), and the LoE of the study was established according to the classification system of the Oxford Centre for Evidence-Based Medicine (OCEBM), which has been adapted by the European Association of Endoscopic Surgery.

Results Of all the studies included in this review, seven referred to validated simulators. These 7 studies were assigned an average MERSQI score of 8.57 from 18 possible points. None of the studies was randomized or conducted in a high-fidelity environment. The best evidence was provided by the studies with the human placenta model, which received a score of 2b and a degree of recommendation of 3.

Conclusion Brazilian simulators can be reproduced in the different laboratories that are available in the country. The average MERSQI score of Brazilian studies is similar to the international average score. New studies should be undertaken to seek greater validation of the simulators and carry out randomized controlled trials.

Resumo

Introdução A simulação em neurocirurgia é uma tendência crescente em programas de residência médica em todo o mundo devido às preocupações que existem sobre a segurança do paciente e o avanço da tecnologia cirúrgica. O treinamento com simulação permite aprimorar as habilidades motoras em um ambiente seguro antes de partir para o cenário real na sala de cirurgia. O objetivo desta revisão é identificar artigos que descrevam simuladores brasileiros, determinar o status de validação e nível de evidência (LoE).

Metodologia Esse estudo foi realizado utilizando o Preferred Reported Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Foi realizado uma busca nas bases de dados Medline, Scielo e Cochrane. Os estudos foram avaliados de acordo com o Medical Education Research Quality Instrument (MERSQI) e o LoE foi estabelecido de acordo com o Oxford Centre for Evidence-Based Medicine (OCEBM) adaptado pela Associação Européia de Cirurgia Endoscópica.

Resultados De todos os estudos incluídos nessa revisão, sete se referiam a simuladores validados. Estes receberam uma pontuação MERSQI média de 8,57 de 18 pontos possíveis. Nenhum dos estudos foi randomizado ou conduzido em ambiente de alta fidelidade. A melhor evidência foi fornecida pelos estudos com a placenta humana que recebeu uma pontuação 2b e um grau de recomendação de 3.

Conclusão Os simuladores brasileiros podem ser reproduzidos nos diferentes laboratórios disponíveis no país. O escore médio do MERSQI de estudos brasileiros é semelhante a pontuação média de estudos internacionais. Novos estudos devem buscar maior validação dos simuladores e maior nível de evidência com ensaios clínicos randomizados.

 
  • References

  • 1 Aydin A, Shafi AM, Shamim Khan M, Dasgupta P, Ahmed K. Current Status of Simulation and Training Models in Urological Surgery: A Systematic Review. J Urol 2016; 196 (02) 312-320
  • 2 Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst 2016; 32 (01) 43-54
  • 3 McGaghie WC, Issenberg SB, Cohen ER, Barsuk JH, Wayne DB. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med 2011; 86 (06) 706-711
  • 4 Loh CYY, Wang AYL, Tiong VTY. , et al. Animal models in plastic and reconstructive surgery simulation-a review. J Surg Res 2018; 221: 232-245
  • 5 Pfandler M, Lazarovici M, Stefan P, Wucherer P, Weigl M. Virtual reality-based simulators for spine surgery: a systematic review. Spine J 2017; 17 (09) 1352-1363
  • 6 Vakharia VN, Vakharia NN, Hill CS. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training. World Neurosurg 2016; 88: 188-198
  • 7 Ryu WHA, Dharampal N, Mostafa AE. , et al. Systematic Review of Patient-Specific Surgical Simulation: Toward Advancing Medical Education. J Surg Educ 2017; 74 (06) 1028-1038
  • 8 Dawe SR, Pena GN, Windsor JA. , et al. Systematic review of skills transfer after surgical simulation-based training. Br J Surg 2014; 101 (09) 1063-1076
  • 9 Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training. A systematic review. J Neurosurg 2014; 121 (02) 228-246
  • 10 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. ; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6 (07) e1000097
  • 11 Reed DA, Cook DA, Beckman TJ, Levine RB, Kern DE, Wright SM. Association between funding and quality of published medical education research. JAMA 2007; 298 (09) 1002-1009
  • 12 Cook DA, Reed DA. Appraising the quality of medical education research methods: the Medical Education Research Study Quality Instrument and the Newcastle-Ottawa Scale-Education. Acad Med 2015; 90 (08) 1067-1076
  • 13 Carter FJ, Schijven MP, Aggarwal R. , et al. Consensus guidelines for validation of virtual reality surgical simulators. Simul Healthc 2006; 1 (03) 171-179
  • 14 Morgan M, Aydin A, Salih A, Robati S, Ahmed K. Current Status of Simulation-based Training Tools in Orthopedic Surgery: A Systematic Review. J Surg Educ 2017; 74 (04) 698-716
  • 15 de Oliveira MMR, Ferrarez CE, Ramos TM. , et al. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity. J Neurosurg 2018; 128 (03) 846-852
  • 16 Oliveira Magaldi M, Nicolato A, Godinho JV. , et al. Human placenta aneurysm model for training neurosurgeons in vascular microsurgery. Neurosurgery 2014; 10 (Suppl. 04) 592-600 , discussion 600–601
  • 17 Oliveira MM, Wendling L, Malheiros JA. , et al. Human Placenta Simulator for Intracranial-Intracranial Bypass: Vascular Anatomy and 5 Bypass Techniques. World Neurosurg 2018; 119: e694-e702
  • 18 Ribeiro de Oliveira MM, Nicolato A, Santos M. , et al. Face, content, and construct validity of human placenta as a haptic training tool in neurointerventional surgery. J Neurosurg 2016; 124 (05) 1238-1244
  • 19 Ghizoni E, de Souza JPSAS, Raposo-Amaral CE. , et al. 3D-Printed Craniosynostosis Model: New Simulation Surgical Tool. World Neurosurg 2018; 109: 356-361
  • 20 Coelho G, Chaves TMF, Goes AF, Del Massa EC, Moraes O, Yoshida M. Multimaterial 3D printing preoperative planning for frontoethmoidal meningoencephalocele surgery. Childs Nerv Syst 2018; 34 (04) 749-756
  • 21 Coelho G, Zymberg S, Lyra M, Zanon N, Warf B. New anatomical simulator for pediatric neuroendoscopic practice. Childs Nerv Syst 2015; 31 (02) 213-219
  • 22 Coelho G, Warf B, Lyra M, Zanon N. Anatomical pediatric model for craniosynostosis surgical training. Childs Nerv Syst 2014; 30 (12) 2009-2014
  • 23 Oliveira MM, Araujo AB, Nicolato A. , et al. Face, Content, and Construct Validity of Brain Tumor Microsurgery Simulation Using a Human Placenta Model. Oper Neurosurg (Hagerstown) 2016; 12 (01) 61-67
  • 24 Filho FV, Coelho G, Cavalheiro S, Lyra M, Zymberg ST. Quality assessment of a new surgical simulator for neuroendoscopic training. Neurosurg Focus 2011; 30 (04) E17
  • 25 Coelho G, Defino HLA. The Role of Mixed Reality Simulation for Surgical Training in Spine: Phase 1 Validation. Spine 2018; 43 (22) 1609-1616
  • 26 Paiva WS, Amorim R, Bezerra DA, Masini M. Aplication of the stereolithography technique in complex spine surgery. Arq Neuropsiquiatr 2007; 65 (2B): 443-445
  • 27 Drummond-Braga B, Peleja SB, Macedo G. , et al. Coconut Model for Learning First Steps of Craniotomy Techniques and Cerebrospinal Fluid Leak Avoidance. World Neurosurg 2016; 96: 191-194
  • 28 Ferreira CD, Matushita H, Silva BR. , et al. Proposal of a new method to induce ventricular system dilation to simulate the features of hydrocephalus and provide an anatomical model for neuroendoscopy training. Childs Nerv Syst 2014; 30 (07) 1209-1215
  • 29 Grillo FW, Souza VH, Matsuda RH. , et al. Patient-specific neurosurgical phantom: assessment of visual quality, accuracy, and scaling effects. 3D Print Med 2018; 4 (01) 3
  • 30 McDougall EM. Validation of surgical simulators. J Endourol 2007; 21 (03) 244-247
  • 31 Van Nortwick SS, Lendvay TS, Jensen AR. , et al. Methodologies for establishing validity in surgical simulation studies. Surgery 2010; 147 (05) 622-630