Semin Musculoskelet Radiol 2019; 23(05): 534-546
DOI: 10.1055/s-0039-1693978
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Perspective on Idiopathic Subchondral, Osteochondral, and Chondral Lesions with Emphasis on the Knee

1   Hessingpark-Clinic, MRI Department, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
25 September 2019 (online)

Abstract

Subchondral, osteochondral, and chondral lesions of unknown cause are often encountered, especially in the knee joint. These are mainly idiopathic bone marrow edema syndrome, osteochondrosis dissecans, and cartilage delaminations. The literature on these diseases is sparse and often confusing and inconsistent. Because there is little evidence, this article was written as a perspective on these conditions. It offers an overview of the literature with personal comments and opinions based on observations from many years of clinical practice. The main goal is to highlight clinically important features and provide a practical guide for dealing with various magnetic resonance imaging findings in everyday work. The article also discusses several terms commonly used in relation to these diseases and their differential diagnoses.

 
  • References

  • 1 Plenk Jr H, Hofmann S, Eschberger J. , et al. Histomorphology and bone morphometry of the bone marrow edema syndrome of the hip. Clin Orthop Relat Res 1997; (334) 73-84
  • 2 Yamamoto T, Kubo T, Hirasawa Y, Noguchi Y, Iwamoto Y, Sueishi K. A clinicopathologic study of transient osteoporosis of the hip. Skeletal Radiol 1999; 28 (11) 621-627
  • 3 Kim YM, Oh HC, Kim HJ. The pattern of bone marrow oedema on MRI in osteonecrosis of the femoral head. J Bone Joint Surg Br 2000; 82 (06) 837-841
  • 4 Yamamoto T, Schneider R, Bullough PG. Insufficiency subchondral fracture of the femoral head. Am J Surg Pathol 2000; 24 (03) 464-468
  • 5 Miyanishi K, Yamamoto T, Nakashima Y. , et al. Subchondral changes in transient osteoporosis of the hip. Skeletal Radiol 2001; 30 (05) 255-261
  • 6 Wilson AJ, Murphy WA, Hardy DC, Totty WG. Transient osteoporosis: transient bone marrow edema?. Radiology 1988; 167 (03) 757-760
  • 7 Kon E, Ronga M, Filardo G. , et al. Bone marrow lesions and subchondral bone pathology of the knee. Knee Surg Sports Traumatol Arthrosc 2016; 24 (06) 1797-1814
  • 8 Thiryayi WA, Thiryayi SA, Freemont AJ. Histopathological perspective on bone marrow oedema, reactive bone change and haemorrhage. Eur J Radiol 2008; 67 (01) 62-67
  • 9 Roemer FW, Frobell R, Hunter DJ. , et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 2009; 17 (09) 1115-1131
  • 10 Klontzas ME, Vassalou EE, Zibis AH, Bintoudi AS, Karantanas AH. MR imaging of transient osteoporosis of the hip: an update on 155 hip joints. Eur J Radiol 2015; 84 (03) 431-436
  • 11 Milonas N, Touzopoulos P, Zafeiris CP, Papantoniou N, Koutsoubeli E, Chatzigiannakis A. Bilateral transient osteoporosis of the knees during pregnancy. A case report and review of the literature. JRPMS 2018; 2: 18-21
  • 12 Ververidis AN, Drosos GI, Kazakos KJ, Xarchas KC, Verettas DA. Bilateral transient bone marrow edema or transient osteoporosis of the knee in pregnancy. Knee Surg Sports Traumatol Arthrosc 2009; 17 (09) 1061-1064
  • 13 Lloyd JM, Lewis M, Jones A. Transient osteoporosis of the knee in pregnancy. J Knee Surg 2006; 19 (02) 121-123
  • 14 Stamp L, McLean L, Stewart N, Birdsall M. Bilateral transient osteoporosis of the knee in pregnancy. Ann Rheum Dis 2001; 60 (07) 721-722
  • 15 Patel V, Temkin S, O'Loughlin M. Transient osteoporosis of pregnancy in a 34-year-old female. Radiol Case Rep 2015; 7 (02) 646
  • 16 Willis-Owen CA, Daurka JS, Chen A, Lewis A. Bilateral femoral neck fractures due to transient osteoporosis of pregnancy: a case report. Cases J 2008; 1 (01) 120
  • 17 Horas K, Fraissler L, Maier G. , et al. High prevalence of vitamin deficiency in patients with bone marrow edema syndrome of the foot and ankle. Foot Ankle Int 2017; 38 (07) 760-766
  • 18 Sprinchorn AE, O'Sullivan R, Beischer AD. Transient bone marrow edema of the foot and ankle and its association with reduced systemic bone mineral density. Foot Ankle Int 2011; 32 (05) S508-S512
  • 19 Trevisan C, Klumpp R, Compagnoni R. Risk factors in transient osteoporosis: a retrospective study on 23 cases. Clin Rheumatol 2016; 35 (10) 2517-2522
  • 20 Alsaed O, Hammoudeh M. Recurrent migratory transient bone marrow edema of the knees associated with low vitamin D and systemic low bone mineral density: a case report and literature review. Case Rep Rheumatol 2018; 2018: 7657982
  • 21 Nelson FR, Craig J, Francois H, Azuh O, Oyetakin-White P, King B. Subchondral insufficiency fractures and spontaneous osteonecrosis of the knee may not be related to osteoporosis. Arch Osteoporos 2014; 9: 194
  • 22 Geith T, Niethammer T, Milz S, Dietrich O, Reiser M, Baur-Melnyk A. Transient bone marrow edema syndrome versus osteonecrosis: perfusion patterns at dynamic contrast-enhanced MR imaging with high temporal resolution can allow differentiation. Radiology 2017; 283 (02) 478-485
  • 23 Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol 2008; 49 (07) 771-786
  • 24 Lecouvet FE, van de Berg BC, Maldague BE. , et al. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am J Roentgenol 1998; 170 (01) 71-77
  • 25 Asadipooya K, Graves L, Greene LW. Transient osteoporosis of the hip: review of the literature. Osteoporos Int 2017; 28 (06) 1805-1816
  • 26 Felson DT, Chaisson CE, Hill CL. , et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134 (07) 541-549
  • 27 Felson DT, Niu J, Guermazi A. , et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 2007; 56 (09) 2986-2992
  • 28 Zhang Y, Nevitt M, Niu J. , et al. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum 2011; 63 (03) 691-699
  • 29 Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis 2011; 70 (01) 60-67
  • 30 Hayes CW, Jamadar DA, Welch GW. , et al. Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 2005; 237 (03) 998-1007
  • 31 Ghasemi RA, Sadeghi S, Rahimee N, Tahmasebi M. Technologies in the treatment of bone marrow edema syndrome. Orthop Clin North Am 2019; 50 (01) 131-138
  • 32 Mirghasemi SA, Trepman E, Sadeghi MS, Rahimi N, Rashidinia S. Bone marrow edema syndrome in the foot and ankle. Foot Ankle Int 2016; 37 (12) 1364-1373
  • 33 Vitali M, Naim Rodriguez N, Pedretti A. , et al. Bone marrow edema syndrome of the medial femoral condyle treated with extracorporeal shock wave therapy: a clinical and MRI retrospective comparative study. Arch Phys Med Rehabil 2018; 99 (05) 873-879
  • 34 Gao F, Sun W, Li Z. , et al. Extracorporeal shock wave therapy in the treatment of primary bone marrow edema syndrome of the knee: a prospective randomised controlled study. BMC Musculoskelet Disord 2015; 16: 379
  • 35 Patel S. Primary bone marrow oedema syndromes. Rheumatology (Oxford) 2014; 53 (05) 785-792
  • 36 Yamamoto T, Bullough PG. Subchondral insufficiency fracture of the femoral head and medial femoral condyle. Skeletal Radiol 2000; 29 (01) 40-44
  • 37 Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am 2000; 82 (06) 858-866
  • 38 Kidwai AS, Hemphill SD, Griffiths HJ. Radiologic case study. Spontaneous osteonecrosis of the knee reclassified as insufficiency fracture. Orthopedics 2005; 28 (03) 236-336 ; 333–336
  • 39 Yamamoto T. Subchondral insufficiency fractures of the femoral head. Clin Orthop Surg 2012; 4 (03) 173-180
  • 40 Ramnath RR, Kattapuram SV. MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined. Skeletal Radiol 2004; 33 (10) 575-581
  • 41 Ikemura S, Yamamoto T, Motomura G, Nakashima Y, Mawatari T, Iwamoto Y. MRI evaluation of collapsed femoral heads in patients 60 years old or older: differentiation of subchondral insufficiency fracture from osteonecrosis of the femoral head. AJR Am J Roentgenol 2010; 195 (01) W63-8
  • 42 Marcacci M, Andriolo L, Kon E, Shabshin N, Filardo G. Aetiology and pathogenesis of bone marrow lesions and osteonecrosis of the knee. EFORT Open Rev 2017; 1 (05) 219-224
  • 43 Jose J, Pasquotti G, Smith MK, Gupta A, Lesniak BP, Kaplan LD. Subchondral insufficiency fractures of the knee: review of imaging findings. Acta Radiol 2015; 56 (06) 714-719
  • 44 Hussain ZB, Chahla J, Mandelbaum BR, Gomoll AH, LaPrade RF. The role of meniscal tears in spontaneous osteonecrosis of the knee: a systematic review of suspected etiology and a call to revisit nomenclature. Am J Sports Med 2019; 47 (02) 501-507
  • 45 Ahlbäck S, Bauer GC, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum 1968; 11 (06) 705-733
  • 46 Wilmot AS, Ruutiainen AT, Bakhru PT, Schweitzer ME, Shabshin N. Subchondral insufficiency fracture of the knee: a recognizable associated soft tissue edema pattern and a similar distribution among men and women. Eur J Radiol 2016; 85 (11) 2096-2103
  • 47 Kubo Y, Motomura G, Ikemura S. , et al. Osteoclast-related markers in the hip joint fluid with subchondral insufficiency fracture of the femoral head. J Orthop Res 2018; 36 (11) 2987-2995
  • 48 Zhao G, Yamamoto T, Ikemura S. , et al. A histopathological evaluation of a concave-shaped low-intensity band on T1-weighted MR images in a subchondral insufficiency fracture of the femoral head. Skeletal Radiol 2010; 39 (02) 185-188
  • 49 Ikemura S, Mawatari T, Matsui G, Iguchi T, Mitsuyasu H. The depth of the low-intensity band on the T1-weighted MR image is useful for distinguishing subchondral insufficiency fracture from osteonecrosis of the collapsed femoral head. Arch Orthop Trauma Surg 2018; 138 (08) 1053-1058
  • 50 Gorbachova T, Melenevsky Y, Cohen M, Cerniglia BW. Osteochondral lesions of the knee: differentiating the most common entities at MRI. Radiographics 2018; 38 (05) 1478-1495
  • 51 Bullough PG. Orthopaedic Pathology. 5th ed. Maryland Heights, MO: Mosby Elsevier; 2010: 347
  • 52 Iida S, Harada Y, Shimizu K. , et al. Correlation between bone marrow edema and collapse of the femoral head in steroid-induced osteonecrosis. AJR Am J Roentgenol 2000; 174 (03) 735-743
  • 53 Meier R, Kraus TM, Schaeffeler C. , et al. Bone marrow oedema on MR imaging indicates ARCO stage 3 disease in patients with AVN of the femoral head. Eur Radiol 2014; 24 (09) 2271-2278
  • 54 Curtiss Jr PH, Kincaid WE. Transitory demineralization of the hip in pregnancy. A report of three cases. J Bone Joint Surg Am 1959; 41-A: 1327-1333
  • 55 Hayes CW, Conway WF, Daniel WW. MR imaging of bone marrow edema pattern: transient osteoporosis, transient bone marrow edema syndrome, or osteonecrosis. Radiographics 1993; 13 (05) 1001-1011 ; discussion 1012
  • 56 Berman N, Brent H, Chang G, Honig S. Transient osteoporosis: not just the hip to worry about. Bone Rep 2016; 5: 308-311
  • 57 Hefti F, Beguiristain J, Krauspe R. , et al. Osteochondritis dissecans: a multicenter study of the European Pediatric Orthopedic Society. J Pediatr Orthop B 1999; 8 (04) 231-245
  • 58 Roßbach BP, Paulus AC, Niethammer TR. , et al. Discrepancy between morphological findings in juvenile osteochondritis dissecans (OCD): a comparison of magnetic resonance imaging (MRI) and arthroscopy. Knee Surg Sports Traumatol Arthrosc 2016; 24 (04) 1259-1264
  • 59 Ellermann JM, Donald B, Rohr S. , et al. Magnetic resonance imaging of osteochondritis dissecans: validation study for the ICRS classification system. Acad Radiol 2016; 23 (06) 724-729
  • 60 Chen CH, Liu YS, Chou PH, Hsieh CC, Wang CK. MR grading system of osteochondritis dissecans lesions: comparison with arthroscopy. Eur J Radiol 2013; 82 (03) 518-525
  • 61 Kijowski R, Blankenbaker DG, Shinki K, Fine JP, Graf BK, De Smet AA. Juvenile versus adult osteochondritis dissecans of the knee: appropriate MR imaging criteria for instability. Radiology 2008; 248 (02) 571-578
  • 62 De Smet AA, Fisher DR, Graf BK, Lange RH. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol 1990; 155 (03) 549-553
  • 63 De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 1996; 25 (02) 159-163
  • 64 Levy AS, Lohnes J, Sculley S, LeCroy M, Garrett W. Chondral delamination of the knee in soccer players. Am J Sports Med 1996; 24 (05) 634-639
  • 65 White CL, Chauvin NA, Waryasz GR, March BT, Francavilla ML. MRI of native knee cartilage delamination injuries. AJR Am J Roentgenol 2017; 209 (05) W317-W321
  • 66 Jannelli E, Parafioriti A, Acerbi A, Ivone A, Fioruzzi A, Fontana A. Acetabular delamination: epidemiology, histological features, and treatment. Cartilage 2019; 10 (03) 314-320
  • 67 Rubin DA, Harner CD, Costello JM. Treatable chondral injuries in the knee: frequency of associated focal subchondral edema. AJR Am J Roentgenol 2000; 174 (04) 1099-1106