CC BY-NC-ND 4.0 · Annals of Otology and Neurotology 2019; 02(01): 33-40
DOI: 10.1055/s-0039-1693834
Review Article
Indian Society of Otology

Human Gaze Holding and Its Disorders

Aasef G. Shaikh
1   Department of Neurology, Case Western Reserve University, Cleveland, Ohio, United States
2   Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
3   Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States
4   Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States
› Author Affiliations
Funding The author is supported by the Career Award from The American Academy of Neurology, George C. Cotzias Memorial Fellowship from the American Parkinson’s Disease Association, Dystonia Medical Research Foundation Research Grant, and Dystonia Coalition NIH U54 TR001456.
Further Information

Publication History

Received: 13 June 2019

Accepted: 17 June 2019

Publication Date:
30 September 2019 (online)

Abstract

Stabilizing the retinal fovea on the object of interest is the most critical requirement for clear vision. Our brain implements sophisticated neural mechanisms to ensure stable gaze. In this article, I will review contemporary research delineating neural mechanisms for gaze holding. I will then describe various disorders of gaze holding in the context of basic neurophysiology, electrophysiology, and membrane biology. Particular focus is on the basic and translational neuroscience of central nystagmus of ocular motor and vestibular etiologies.

 
  • References

  • 1 Leigh RJ, Zee DS. The Neurology of Eye Movements. New York, NY: Oxford; 2006
  • 2 Cannon SC, Robinson DA. Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 1987; 57 (05) 1383-1409
  • 3 Crawford JD, Cadera W, Vilis T. Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal. Science 1991; 252 (5012): 1551-1553
  • 4 Lorente De NoR. Analysis of the activity of the chains of internuncial neurons. Journal of Neurophysiology. J Neurophysiol 1938; 1 (03) 207-244
  • 5 Hebb DO. The Organization of Behavior. New York, NY: Wiley; 1949
  • 6 Arnold DB, Robinson DA, Leigh RJ. Nystagmus induced by pharmacological inactivation of the brainstem ocular motor integrator in monkey. Vision Res 1999; 39 (25) 4286-4295
  • 7 Robinson DA. The effect of cerebellectomy on the cat’s bestibulo-ocular integrator. Brain Res 1974; 71 (02) (03) 195-207
  • 8 Arnold DB, Robinson DA. A learning network model of the neural integrator of the oculomotor system. Biol Cybern 1991; 64 (06) 447-454
  • 9 Cannon SC, Robinson DA. An improved neural-network model for the neural integrator of the oculomotor syste more realistic neuron behavior. Biol Cybern 1985; 53 (02) 93-108
  • 10 Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat Neurosci 2001; 4 (02) 184-193
  • 11 Aksay E, Olasagasti I, Mensh BD, Baker R, Goldman MS, Tank DW. Functional dissection of circuitry in a neural integrator. Nat Neurosci 2007; 10 (04) 494-504
  • 12 Miri A, Daie K, Arrenberg AB, Baier H, Aksay E, Tank DW. Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat Neurosci 2011; 14 (09) 1150-1159
  • 13 Zee DS, Yee RD, Cogan DG, Robinson DA, Engel WK. Ocular motor abnormalities in hereditary cerebellar ataxia. Brain 1976; 99 (02) 207-234
  • 14 Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 1981; 46 (04) 878-899
  • 15 Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol 1980; 7 (01) 37-40
  • 16 Raphan T, Matsuo V, Cohen B. Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 1979; 35 (02) 229-248
  • 17 Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science 1985; 228 (4696): 199-202
  • 18 Cohen B, Helwig D, Raphan T. Baclofen and velocity storage: a model of the effects of the drug on the vestibulo-ocular reflex in the rhesus monkey. J Physiol 1987; 393: 703-725
  • 19 Dai M, Raphan T, Cohen B. Effects of baclofen on the angular vestibulo-ocular reflex. Exp Brain Res 2006; 171 (02) 262-271
  • 20 Solomon D, Cohen B. Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res 1994; 102 (01) 57-68
  • 21 Highstein SM, Rabbitt RD, Holstein GR, Boyle RD. Determinants of spatial and temporal coding by semicircular canal afferents. J Neurophysiol 2005; 93 (05) 2359-2370
  • 22 Skavenski AA, Robinson DA. Role of abducens neurons in vestibuloocular reflex. J Neurophysiol 1973; 36 (04) 724-738
  • 23 Shaikh AG, Meng H, Angelaki DE. Multiple reference frames for motion in the primate cerebellum. J Neurosci 2004; 24 (19) 4491-4497
  • 24 Shaikh AG, Palla A, Marti S. et al., Role of Cerebellum in motion perception and vestibulo-ocular reflex-similarities and disparities. Cerebellum 2013; 12 (01) 97-107
  • 25 Lee H, Sohn SI, Cho YW. et al. Cerebellar infarction presenting isolated vertigo: frequency and vascular topographical patterns. Neurology 2006; 67 (07) 1178-1183
  • 26 Rubenstein RL, Norman DM, Schindler RA, Kaseff L. Cerebellar infarction—a presentation of vertigo. Laryngoscope 1980; 90 (03) 505-514
  • 27 Shaikh AG. Motion perception without nystagmus—a novel manifestation of cerebellar stroke. J Stroke Cerebrovasc Dis 2014; 23 (05) 1148-1156
  • 28 Nam J, Kim S, Huh Y, Kim JS. Ageotropic central positional nystagmus in nodular infarction. Neurology 2009; 73 (14) 1163
  • 29 Kim HA, Yi HA, Lee H. Apogeotropic central positional nystagmus as a sole sign of nodular infarction. Neurol Sci 2012; 33 (05) 1189-1191
  • 30 Johkura K. Central paroxysmal positional vertigo: isolated dizziness caused by small cerebellar hemorrhage. Stroke 2007; 38 (06) e26-e27 , author reply e28
  • 31 Shaikh AG, Marti S, Tarnutzer AA. et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol 2011; 105 (06) 3034-3041
  • 32 Marti S, Palla A, Straumann D. Gravity dependence of ocular drift in patients with cerebellar downbeat nystagmus. Ann Neurol 2002; 52 (06) 712-721
  • 33 Kattah JC, Gujrati M. Familial positional downbeat nystagmus and cerebellar ataxia: clinical and pathologic findings. Ann NY Acad Sci 2005; 1039: 540-543
  • 34 Walker MF, Zee DS. Cerebellar disease alters the axis of the high-acceleration vestibuloocular reflex. J Neurophysiol 2005; 94 (05) 3417-3429
  • 35 Schultheis LW, Robinson DA. Directional plasticity of the vestibuloocular reflex in the cat. Ann NY Acad Sci 1981; 374: 504-512
  • 36 Korres SG, Balatsouras DG. Diagnostic, pathophysiologic, and therapeutic aspects of benign paroxysmal positional vertigo. Otolaryngol Head Neck Surg 2004; 131 (04) 438-444
  • 37 Kornhuber HH. Periodic alternating nystagmus (nystagmus alternans) and excitability of the vestibular system (article in German). Arch Ohren Nasen Kehlkopfheilkd 1959; 174 (03) 182-209
  • 38 Waespe W, Cohen B, Raphan T. Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 1983; 50 (01) 9-33
  • 39 Halmagyi GM, Rudge P, Gresty MA, Leigh RJ, Zee DS. Treatment of periodic alternating nystagmus. Ann Neurol 1980; 8 (06) 609-611
  • 40 Shaikh AG, Marti S, Tarnutzer AA. et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry 2009; 80 (08) 858-864
  • 41 Pierrot-Deseilligny C, Milea D. Vertical nystagmus: clinical facts and hypotheses. Brain 2005; 128 (Pt 6): 1237-1246
  • 42 Pierrot-Deseilligny C, Milea D, Sirmai J, Papeix C, Rivaud-Péchoux S. Upbeat nystagmus due to a small pontine lesion: evidence for the existence of a crossing ventral tegmental tract. Eur Neurol 2005; 54 (04) 186-190
  • 43 Liao K, Walker MF, Joshi A, Reschke M, Leigh RJ. Vestibulo-ocular responses to vertical translation in normal human subjects. Exp Brain Res 2008; 185 (04) 553-562
  • 44 Liao K, Walker MF, Joshi A, Reschke M, Wang Z, Leigh RJ. A reinterpretation of the purpose of the translational vestibulo-ocular reflex in human subjects. Prog Brain Res 2008; 171: 295-302
  • 45 Wray SH, Dalmau J, Chen A, King S, Leigh RJ. Paraneoplastic disorders of eye movements. Ann N Y Acad Sci 2011; 1233: 279-284
  • 46 Wray SH, Martinez-Hernandez E, Dalmau J. et al. Paraneoplastic upbeat nystagmus. Neurology 2011; 77 (07) 691-693
  • 47 Helmchen C, Sprenger A, Rambold H, Sander T, Kömpf D, Straumann D. Effect of 3,4-diaminopyridine on the gravity dependence of ocular drift in downbeat nystagmus. Neurology 2004; 63 (04) 752-753
  • 48 Angelaki DE, Shaikh AG, Green AM, Dickman JD. Neurons compute internal models of the physical laws of motion. Nature 2004; 430 (6999): 560-564
  • 49 Green AM, Angelaki DE. Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator. J Neurosci 2003; 23 (28) 9265-9275
  • 50 Green AM, Shaikh AG, Angelaki DE. Sensory vestibular contributions to constructing internal models of self-motion. J Neural Eng 2005; 2 (03) S164-S179
  • 51 Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE. Sensory convergence solves a motion ambiguity problem. Curr Biol 2005; 15 (18) 1657-1662
  • 52 Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 2007; 54 (06) 973-985
  • 53 Shaikh AG, Zee DS, Crawford JD, Jinnah HA. Cervical dystonia: a neural integrator disorder. Brain 2016; 139 (Pt 10): 2590-2599