Thromb Haemost 2019; 119(08): 1274-1282
DOI: 10.1055/s-0039-1692983
Theme Issue Article
Georg Thieme Verlag KG Stuttgart · New York

Platelet–Neutrophil Crosstalk in Atherothrombosis

Joachim Pircher
1   Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
2   German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
,
Bernd Engelmann
3   Institut für Laboratoriumsmedizin, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
,
Steffen Massberg
1   Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
2   German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
,
Christian Schulz
1   Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
2   German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
› Author Affiliations
Funding This work was supported by the Deutsche Forschungsgemeinschaft (SFB 1123 project A07 to C.S. and project B06 to S.M. and B.E.) and the DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance (to C.S. and S.M.). J.P. is supported by a Gerok position of the SFB 914.
Further Information

Publication History

14 February 2019

03 June 2019

Publication Date:
29 June 2019 (online)

Abstract

Atherothrombosis is a frequent cause of cardiovascular mortality. It is mostly triggered by plaque rupture and exposure of the thrombogenic subendothelial matrix, which initiates platelet aggregation and clot formation. Current antithrombotic strategies, however, target both thrombosis and physiological hemostasis and thereby increase bleeding risk. Thus, there is an unmet clinical need for optimized therapies. Neutrophil activation and consecutive interactions of neutrophils and platelets contribute mechanistically to thromboinflammation and arterial thrombosis, and thus present a potential therapeutic target. Platelet–neutrophil interactions are mediated through adhesion molecules such as P-selectin and P-selectin glycoprotein ligand 1 as well as glycoprotein Ib and macrophage-1 antigen, which mediate physical cell interactions and intracellular signaling. Release of soluble mediators as well as direct signaling between platelets and neutrophils lead to their reciprocal activation and neutrophil release of extracellular traps, scaffolds of condensed chromatin that play a prothrombotic role in atherothrombosis. In this article, we review the role of neutrophils and neutrophil-derived prothrombotic molecules in platelet activation and atherothrombosis, and highlight potential therapeutic targets.

 
  • References

  • 1 Libby P. Inflammation in atherosclerosis. Nature 2002; 420 (6917): 868-874
  • 2 Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340 (02) 115-126
  • 3 Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145 (03) 341-355
  • 4 Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res 2016; 118 (04) 692-702
  • 5 Vorchheimer DA, Becker R. Platelets in atherothrombosis. Mayo Clin Proc 2006; 81 (01) 59-68
  • 6 Samara WM, Gurbel PA. The role of platelet receptors and adhesion molecules in coronary artery disease. Coron Artery Dis 2003; 14 (01) 65-79
  • 7 van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009; 85 (02) 195-204
  • 8 Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 2009; 102 (02) 248-257
  • 9 Roberts HR, Monroe DM, Escobar MA. Current concepts of hemostasis: implications for therapy. Anesthesiology 2004; 100 (03) 722-730
  • 10 Willoughby S, Holmes A, Loscalzo J. Platelets and cardiovascular disease. Eur J Cardiovasc Nurs 2002; 1 (04) 273-288
  • 11 Rosing J, van Rijn JL, Bevers EM, van Dieijen G, Comfurius P, Zwaal RF. The role of activated human platelets in prothrombin and factor X activation. Blood 1985; 65 (02) 319-332
  • 12 Roffi M, Patrono C, Collet JP. , et al; ESC Scientific Document Group. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016; 37 (03) 267-315
  • 13 Ibanez B, James S, Agewall S. , et al; ESC Scientific Document Group. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the Management of Acute Myocardial Infarction in Patients Presenting with ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2018; 39 (02) 119-177
  • 14 Steg PG, Huber K, Andreotti F. , et al. Bleeding in acute coronary syndromes and percutaneous coronary interventions: position paper by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J 2011; 32 (15) 1854-1864
  • 15 Drechsler M, Megens RT, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010; 122 (18) 1837-1845
  • 16 Ionita MG, van den Borne P, Catanzariti LM. , et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol 2010; 30 (09) 1842-1848
  • 17 Mangold A, Alias S, Scherz T. , et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 2015; 116 (07) 1182-1192
  • 18 Riegger J, Byrne RA, Joner M. , et al; Prevention of Late Stent Thrombosis by an Interdisciplinary Global European Effort (PRESTIGE) Investigators. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J 2016; 37 (19) 1538-1549
  • 19 Silvestre-Roig C, Braster Q, Wichapong K. , et al. Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature 2019; 569 (7755): 236-240
  • 20 Massberg S, Grahl L, von Bruehl ML. , et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 21 Merhi Y, Guidoin R, Provost P, Leung TK, Lam JY. Increase of neutrophil adhesion and vasoconstriction with platelet deposition after deep arterial injury by angioplasty. Am Heart J 1995; 129 (03) 445-451
  • 22 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 23 Knight JS, Luo W, O'Dell AA. , et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114 (06) 947-956
  • 24 Swystun LL, Liaw PC. The role of leukocytes in thrombosis. Blood 2016; 128 (06) 753-762
  • 25 Pircher J, Czermak T, Ehrlich A. , et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun 2018; 9 (01) 1523
  • 26 Novotny J, Chandraratne S, Weinberger T. , et al. Histological comparison of arterial thrombi in mice and men and the influence of Cl-amidine on thrombus formation. PLoS One 2018; 13 (01) e0190728
  • 27 Ridker PM, Everett BM, Thuren T. , et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 28 Massberg S, Brand K, Grüner S. , et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196 (07) 887-896
  • 29 Sreeramkumar V, Adrover JM, Ballesteros I. , et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014; 346 (6214): 1234-1238
  • 30 Furman MI, Benoit SE, Barnard MR. , et al. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol 1998; 31 (02) 352-358
  • 31 Kopp CW, Gremmel T, Steiner S. , et al. Platelet-monocyte cross talk and tissue factor expression in stable angina vs. unstable angina/non ST-elevation myocardial infarction. Platelets 2011; 22 (07) 530-536
  • 32 Ott I, Neumann FJ, Gawaz M, Schmitt M, Schömig A. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation 1996; 94 (06) 1239-1246
  • 33 Rossaint J, Zarbock A. Platelets in leucocyte recruitment and function. Cardiovasc Res 2015; 107 (03) 386-395
  • 34 Neumann FJ, Marx N, Gawaz M. , et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 1997; 95 (10) 2387-2394
  • 35 Brandt E, Petersen F, Ludwig A, Ehlert JE, Bock L, Flad HD. The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J Leukoc Biol 2000; 67 (04) 471-478
  • 36 von Hundelshausen P, Petersen F, Brandt E. Platelet-derived chemokines in vascular biology. Thromb Haemost 2007; 97 (05) 704-713
  • 37 Mause SF, von Hundelshausen P, Zernecke A, Koenen RR, Weber C. Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 2005; 25 (07) 1512-1518
  • 38 Yuan Y, Alwis I, Wu MCL. , et al. Neutrophil macroaggregates promote widespread pulmonary thrombosis after gut ischemia. Sci Transl Med 2017; 9 (409) eaam5861
  • 39 Looney MR, Nguyen JX, Hu Y, Van Ziffle JA, Lowell CA, Matthay MA. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest 2009; 119 (11) 3450-3461
  • 40 Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest 2006; 116 (12) 3211-3219
  • 41 Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood 2014; 124 (17) 2625-2634
  • 42 Hamid U, Krasnodembskaya A, Fitzgerald M. , et al. Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS. Thorax 2017; 72 (11) 971-980
  • 43 Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013; 13 (03) 159-175
  • 44 Yang J, Furie BC, Furie B. The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte-endothelial and leukocyte-platelet interaction. Thromb Haemost 1999; 81 (01) 1-7
  • 45 Evangelista V, Manarini S, Sideri R. , et al. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 1999; 93 (03) 876-885
  • 46 Evangelista V, Pamuklar Z, Piccoli A. , et al. Src family kinases mediate neutrophil adhesion to adherent platelets. Blood 2007; 109 (06) 2461-2469
  • 47 Théorêt JF, Yacoub D, Hachem A, Gillis MA, Merhi Y. P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation. Thromb Res 2011; 128 (03) 243-250
  • 48 Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002; 8 (10) 1175-1181
  • 49 Denis CV, Wagner DD. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler Thromb Vasc Biol 2007; 27 (04) 728-739
  • 50 Schmitt C, Abt M, Ciorciaro C. , et al. First-in-man study with inclacumab, a human monoclonal antibody against P-selectin. J Cardiovasc Pharmacol 2015; 65 (06) 611-619
  • 51 Ataga KI, Kutlar A, Kanter J. , et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med 2017; 376 (05) 429-439
  • 52 Stähli BE, Gebhard C, Duchatelle V. , et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention according to timing of infusion: insights from the SELECT-ACS trial. J Am Heart Assoc 2016; 5 (11) e004255
  • 53 Tardif JC, Tanguay JF, Wright SR. , et al. Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial. J Am Coll Cardiol 2013; 61 (20) 2048-2055
  • 54 Oostingh GJ, Pozgajova M, Ludwig RJ. , et al. Diminished thrombus formation and alleviation of myocardial infarction and reperfusion injury through antibody- or small-molecule-mediated inhibition of selectin-dependent platelet functions. Haematologica 2007; 92 (04) 502-512
  • 55 Li J, Kim K, Jeong SY. , et al. Platelet protein disulfide isomerase promotes glycoprotein Ibα-mediated platelet-neutrophil interactions under thromboinflammatory conditions. Circulation 2019; 139 (10) 1300-1319
  • 56 Hirahashi J, Hishikawa K, Kaname S. , et al. Mac-1 (CD11b/CD18) links inflammation and thrombosis after glomerular injury. Circulation 2009; 120 (13) 1255-1265
  • 57 Wang Y, Gao H, Shi C. , et al. Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα. Nat Commun 2017; 8: 15559
  • 58 Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 2005; 115 (12) 3363-3369
  • 59 Estevez B, Du X. New concepts and mechanisms of platelet activation signaling. Physiology (Bethesda) 2017; 32 (02) 162-177
  • 60 Pluskota E, Woody NM, Szpak D. , et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles. Blood 2008; 112 (06) 2327-2335
  • 61 Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: past, present and future. Thromb Haemost 2017; 117 (07) 1249-1257
  • 62 Firbas C, Siller-Matula JM, Jilma B. Targeting von Willebrand factor and platelet glycoprotein Ib receptor. Expert Rev Cardiovasc Ther 2010; 8 (12) 1689-1701
  • 63 Gresele P, Momi S. Inhibitors of the interaction between von Willebrand factor and platelet GPIb/IX/V. Handb Exp Pharmacol 2012; (210) 287-309
  • 64 Lei X, Reheman A, Hou Y. , et al. Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb Haemost 2014; 111 (02) 279-289
  • 65 Schulz C, von Brühl ML, Barocke V. , et al. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall. J Thromb Haemost 2011; 9 (05) 1007-1019
  • 66 Kuijper PH, Gallardo Tores HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ. Platelet associated fibrinogen and ICAM-2 induce firm adhesion of neutrophils under flow conditions. Thromb Haemost 1998; 80 (03) 443-448
  • 67 Faraday N, Schunke K, Saleem S. , et al. Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils. PLoS One 2013; 8 (08) e71447
  • 68 Horn M, Bertling A, Brodde MF. , et al. Human neutrophil alpha-defensins induce formation of fibrinogen and thrombospondin-1 amyloid-like structures and activate platelets via glycoprotein IIb/IIIa. J Thromb Haemost 2012; 10 (04) 647-661
  • 69 Kaiser P, Harenberg J, Walenga JM. , et al. Effects of a heparin-binding protein on blood coagulation and platelet function. Semin Thromb Hemost 2001; 27 (05) 495-502
  • 70 Wohner N, Keresztes Z, Sótonyi P. , et al. Neutrophil granulocyte-dependent proteolysis enhances platelet adhesion to the arterial wall under high-shear flow. J Thromb Haemost 2010; 8 (07) 1624-1631
  • 71 Gorudko IV, Sokolov AV, Shamova EV. , et al. Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry. Biol Open 2013; 2 (09) 916-923
  • 72 Kolarova H, Klinke A, Kremserova S. , et al. Myeloperoxidase induces the priming of platelets. Free Radic Biol Med 2013; 61: 357-369
  • 73 LaRosa CA, Rohrer MJ, Benoit SE, Rodino LJ, Barnard MR, Michelson AD. Human neutrophil cathepsin G is a potent platelet activator. J Vasc Surg 1994; 19 (02) 306-318 , discussion 318–319
  • 74 Gould TJ, Vu TT, Swystun LL. , et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984
  • 75 Jordan RE, Nelson RM, Kilpatrick J, Newgren JO, Esmon PC, Fournel MA. Inactivation of human antithrombin by neutrophil elastase. Kinetics of the heparin-dependent reaction. J Biol Chem 1989; 264 (18) 10493-10500
  • 76 Wang Y, Fang C, Gao H. , et al. Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis. J Clin Invest 2014; 124 (05) 2160-2171
  • 77 Pruenster M, Kurz AR, Chung KJ. , et al. Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion. Nat Commun 2015; 6: 6915
  • 78 Altwegg LA, Neidhart M, Hersberger M. , et al. Myeloid-related protein 8/14 complex is released by monocytes and granulocytes at the site of coronary occlusion: a novel, early, and sensitive marker of acute coronary syndromes. Eur Heart J 2007; 28 (08) 941-948
  • 79 Rossaint J, Kühne K, Skupski J. , et al. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat Commun 2016; 7: 13464
  • 80 Paul BZ, Jin J, Kunapuli SP. Molecular mechanism of thromboxane A(2)-induced platelet aggregation. Essential role for p2t(ac) and alpha(2a) receptors. J Biol Chem 1999; 274 (41) 29108-29114
  • 81 Brinkmann V, Reichard U, Goosmann C. , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 82 Fuchs TA, Abed U, Goosmann C. , et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (02) 231-241
  • 83 Wang Y, Li M, Stadler S. , et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 2009; 184 (02) 205-213
  • 84 Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207 (09) 1853-1862
  • 85 Leshner M, Wang S, Lewis C. , et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol 2012; 3: 307
  • 86 Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191 (03) 677-691
  • 87 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 2018; 18 (02) 134-147
  • 88 Pilsczek FH, Salina D, Poon KK. , et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185 (12) 7413-7425
  • 89 Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123 (18) 2768-2776
  • 90 Megens RT, Vijayan S, Lievens D. , et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 2012; 107 (03) 597-598
  • 91 Borissoff JI, Joosen IA, Versteylen MO. , et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013; 33 (08) 2032-2040
  • 92 de Boer OJ, Li X, Teeling P. , et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 2013; 109 (02) 290-297
  • 93 Stakos DA, Kambas K, Konstantinidis T. , et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 2015; 36 (22) 1405-1414
  • 94 Martinod K, Demers M, Fuchs TA. , et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 2013; 110 (21) 8674-8679
  • 95 Franck G, Mawson TL, Folco EJ. , et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 2018; 123 (01) 33-42
  • 96 Noubouossie DF, Whelihan MF, Yu YB. , et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017; 129 (08) 1021-1029
  • 97 Kannemeier C, Shibamiya A, Nakazawa F. , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 98 Knight JS, Zhao W, Luo W. , et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 2013; 123 (07) 2981-2993
  • 99 Semeraro F, Ammollo CT, Morrissey JH. , et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 100 Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011; 9 (09) 1795-1803
  • 101 Michels A, Albánez S, Mewburn J. , et al. Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis. J Thromb Haemost 2016; 14 (11) 2274-2286
  • 102 Laridan E, Denorme F, Desender L. , et al. Neutrophil extracellular traps in ischemic stroke thrombi. Ann Neurol 2017; 82 (02) 223-232
  • 103 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 104 Østerud B, Bjørklid E. Sources of tissue factor. Semin Thromb Hemost 2006; 32 (01) 11-23
  • 105 Day SM, Reeve JL, Pedersen B. , et al. Macrovascular thrombosis is driven by tissue factor derived primarily from the blood vessel wall. Blood 2005; 105 (01) 192-198
  • 106 Kambas K, Mitroulis I, Apostolidou E. , et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One 2012; 7 (09) e45427
  • 107 Pfeiler S, Stark K, Massberg S, Engelmann B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica 2017; 102 (02) 206-213
  • 108 Maugeri N, Campana L, Gavina M. , et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
  • 109 Tadie JM, Bae HB, Jiang S. , et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 2013; 304 (05) L342-L349
  • 110 Vogel S, Bodenstein R, Chen Q. , et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125 (12) 4638-4654
  • 111 Bianchi ME, Beltrame M. Upwardly mobile proteins. Workshop: the role of HMG proteins in chromatin structure, gene expression and neoplasia. EMBO Rep 2000; 1 (02) 109-114
  • 112 Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28: 367-388
  • 113 Rath D, Geisler T, Gawaz M, Vogel S. HMGB1 expression level in circulating platelets is not significantly associated with outcomes in symptomatic coronary artery disease. Cell Physiol Biochem 2017; 43 (04) 1627-1633
  • 114 Busque L, Patel JP, Figueroa ME. , et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44 (11) 1179-1181
  • 115 Jaiswal S, Natarajan P, Silver AJ. , et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 2017; 377 (02) 111-121
  • 116 Wolach O, Sellar RS, Martinod K. , et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med 2018; 10 (436) eaan8292
  • 117 Hobbs CM, Manning H, Bennett C. , et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood 2013; 122 (23) 3787-3797