CC BY-NC-ND 4.0 · Homeopathy 2020; 109(01): 030-036
DOI: 10.1055/s-0039-1692162
Debate
The Faculty of Homeopathy

Correlation between Vitalism and Genetics According to the Paradigm of Complexity

Marcus Zulian Teixeira
1   School of Medicine, University of São Paulo, São Paulo, Brazil
› Author Affiliations
Further Information

Publication History

24 March 2019

23 April 2019

Publication Date:
18 July 2019 (online)

Abstract

Background In homeopathic philosophy, vital force is a non-material substrate that is responsible for maintaining the body's sensations and functions and where homeopathic medicines act. In genetics, the body's vital functions are controlled by biochemical information, which is contained in the cell genome and consists of a protein encoding portion (exome) and another that regulates this encoding scheme (epigenome). Both the philosophical vital force and the genome present properties of complex and dynamic self-organisation systems.

Aims This study aimed to explore and develop a philosophical-scientific correlation between vitalism and genetics according to the complexity paradigm.

Results Vital principle and genome present inseparable composition among distinct existing components that influence one another and form a network of connections that create complex and dynamic self-organisation behaviour. Described in both models, ‘vortex’ indicates the existence of a force coming from within the system that is externalised as an emergent, information-transmitting phenomenon. Supporting this correlation, some experimental studies show that homeopathic medicines act on the genome by modulating gene expression.

Conclusions In line with the similarity of existing characteristics and properties, the genome may be considered as hypothetical biological substrate of organic vital force.

Highlights

• The vital force (or vital principle) is a philosophical non-material substrate, theoretically responsible for maintaining the body's sensations and functions.


• The cell genome controls the body's vital functions and consists of a protein encoding portion (exome) and another that regulates this encoding scheme (epigenome).


• Complex and dynamic self-organisation systems are composed of distinct units of behaviour that influence each other, forming an intrinsic network of connections.


• Both the vital principle and the genome (exome plus epigenome) present properties of complex and dynamic self-organisation systems.


• It is hypothesised that the cell genome is the biological representation of the organic vital force.


 
  • References

  • 1 Hahnemann S. . Organon der Heilkunst. Organon da arte de curar. 6th ed. Translated by Edméa Marturano Villela and Izao Carneiro Soares. Ribeirão Preto: Museu de Homeopatia Abrahão Brickmann; 1995 . Available at: http://homeoint.org/books4/organon/index.htm . Accessed April 4, 2019
  • 2 Teixeira MZ. A concepção vitalista de Samuel Hahnemann [The vitalist concept of Samuel Hahnemann]. Rev Homeopatia (São Paulo) 1996; 61: 39-44
  • 3 Teixeira MZ. O vitalismo hahnemanniano na prática clínica homeopática [Hahnemann's vitalism in homeopathic clinical practice]. Rev Homeopatia (São Paulo) 2000; 65: 22-34
  • 4 Teixeira MZ. A natureza imaterial do homem: estudo comparativo do vitalismo homeopático com as principais concepções médicas e filosóficas [The non-material nature of the man: comparative study of homeopathic vitalism with mainly medical and philosophical concepts]. São Paulo: Editorial Petrus; 2000. . Available at: http://www.homeozulian.med.br/homeozulian_visualizarlivroautor.asp?id=4 . Accessed April 4, 2019
  • 5 Teixeira MZ. Antropologia Médica Vitalista: uma ampliação ao entendimento do processo de adoecimento humano [Vitalist Medical Anthropology: a broadening to the understanding of the human illness process]. Rev Med (São Paulo) 2017; 96: 145-158
  • 6 Hahnemann S. The Chronic Diseases, their Peculiar Nature and their Homeopathic Cure. Dudley P, ed. Translated from the second enlarged German edition of 1835 by Prof. Louis H. Tafel. With annotations by Richard Hughes. Philadelphia: Boericke & Tafel; 1896
  • 7 Coffey DS. Self-organization, complexity and chaos: the new biology for medicine. Nat Med 1998; 4: 882-885
  • 8 Higgins JP. Nonlinear systems in medicine. Yale J Biol Med 2002; 75: 247-260
  • 9 Bizzarri M, Palombo A, Cucina A. Theoretical aspects of systems biology. Prog Biophys Mol Biol 2013; 112: 33-43
  • 10 Palazzo LA. Complexidade, caos e auto-organização [Complexity, chaos and self-organization]. In: III Oficina de Inteligência Artificial. Pelotas: Educat; 1999: 49-67 . Available at: http://algol.dcc.ufla.br/~monserrat/isc/Complexidade_caos_autoorganizacao.html . Accessed April 4, 2019
  • 11 Ramos DCS. Transdisciplinaridade em saúde: uma análise integrativa da literatura [Transdisciplinarity in health: an integrative analysis of the literature]. [Master thesis]. Universidade Estadual Paulista, Faculdade de Medicina de Botucatu; 2009 . Available at: https://repositorio.unesp.br/handle/11449/98369 . Accessed April 4, 2019
  • 12 Bell IR, Baldwin CM, Schwartz GE. Translating a nonlinear systems theory model for homeopathy into empirical tests. Altern Ther Health Med 2002; 8: 58-66
  • 13 Bellavite P. Complexity science and homeopathy: a synthetic overview. Homeopathy 2003; 92: 203-212
  • 14 Bellavite P, Olioso D, Marzotto M, Moratti E, Conforti A. A dynamic network model of the similia principle. Complement Ther Med 2013; 21: 750-761
  • 15 Bell IR, Schwartz GE. Enhancement of adaptive biological effects by nanotechnology preparation methods in homeopathic medicines. Homeopathy 2015; 104: 123-138
  • 16 Fritzsche M, Li D, Colin-York H. , et al. Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nat Commun 2017; 8: 14347
  • 17 Sweta KM, Awasthi HH, Godbole A, Prajapati S. Physio-anatomical resemblance of inferior hypogastric plexus with Muladhara Chakra: a cadaveric study. Ayu 2017; 38: 7-9
  • 18 Fromknecht R, Goncalves M, Greten HJ, Machado J. Are conduits superconductor-like and supported by tetrahedra structure of hyaluronic matrix in living systems? New perspectives. J Complement Integr Med 2013; 10: 259-263
  • 19 Bell IR, Koithan M, Pincus D. Methodological implications of nonlinear dynamical systems models for whole systems of complementary and alternative medicine. Forsch Komplement Med 2012; 19: 15-21
  • 20 Rioux J. A complex, nonlinear dynamic systems perspective on Ayurveda and Ayurvedic research. J Altern Complement Med 2012; 18: 709-718
  • 21 Chang S. The meridian system and mechanism of acupuncture – a comparative review. Part 1: the meridian system. Taiwan J Obstet Gynecol 2012; 51: 506-514
  • 22 Holliday R. Epigenetics: a historical overview. Epigenetics 2006; 1: 76-80
  • 23 Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705
  • 24 García R, Ayala PA, Perdomo SP. Epigenética: definición, bases moleculares e implicaciones en la salud y en la evolución humana [Epigenetics: definition, molecular bases and implications in human health and evolution]. Rev Cienc Salud 2012; 10: 59-71
  • 25 Costa EBO, Pacheco C. Epigenética: regulação da expressão gênica em nível transcricional e suas implicações [Epigenetics: gene expression regulation at transcriptional level and its implications]. Semina Ciências Biológicas e da Saúde 2013; 34: 125-136
  • 26 Schultz MD, He Y, Whitaker JW. , et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 2015; 523: 212-216
  • 27 Crews D, Gillette R, Scarpino SV, Manikkam M, Savenkova MI, Skinner MK. Epigenetic transgenerational inheritance of altered stress responses. Proc Natl Acad Sci U S A 2012; 109: 9143-9148
  • 28 Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8: 253-262
  • 29 Waggoner D. Mechanisms of disease: epigenesis. Semin Pediatr Neurol 2007; 14: 7-14
  • 30 Santos-Rebouças CB, Pimentel MM. Implication of abnormal epigenetic patterns for human diseases. Eur J Hum Genet 2007; 15: 10-17
  • 31 Esteller M. Epigenetics in cancer. N Engl J Med 2008; 358: 1148-1159
  • 32 Nestler EJ, Peña CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neuroscientist 2016; 22: 447-463
  • 33 Freitas-Silva LR, Ortega FJG. A epigenética como nova hipótese etiológica no campo psiquiátrico contemporâneo [Epigenetics as new etiological hypothesis in the contemporary psychiatric field]. Physis: Revista de Saúde Coletiva 2014; 24: 765-786
  • 34 Waliszewski P, Molski M, Konarski J. On the holistic approach in cellular and cancer biology: nonlinearity, complexity, and quasi-determinism of the dynamic cellular network. J Surg Oncol 1998; 68: 70-78
  • 35 Jura J, Wegrzyn P, Jura J, Koj A. Regulatory mechanisms of gene expression: complexity with elements of deterministic chaos. Acta Biochim Pol 2006; 53: 1-10
  • 36 Meyl K. DNA and cell resonance: magnetic waves enable cell communication. DNA Cell Biol 2012; 31: 422-426
  • 37 Gulati S, Muller SJ, Liepmann D. Flow of DNA solutions in a microfluidic gradual contraction. Biomicrofluidics 2015; 9: 054102
  • 38 Taylor AJ, Dennis MR. Vortex knots in tangled quantum eigenfunctions. Nat Commun 2016; 7: 12346
  • 39 Scheeler MW, van Rees WM, Kedia H, Kleckner D, Irvine WTM. Complete measurement of helicity and its dynamics in vortex tubes. Science 2017; 357: 487-491
  • 40 Silva G, Duarte LFD. Epigênese e epigenética: as muitas vidas do vitalismo ocidental [Epigenesis and epigenetics: the sundry lives of Western vitalism]. Horiz Antropol 2016; 22: 425-453
  • 41 Kirschner M, Gerhart J, Mitchison T. Molecular “vitalism”. Cell 2000; 100: 79-88
  • 42 Khuda-Bukhsh AR. Potentized homoeopathic drugs act through regulation of gene-expression: a hypothesis to explain their mechanism and pathways of action in vitro. Complement Ther Med 1997; 5: 43-46
  • 43 Khuda-Bukhsh AR. Towards understanding molecular mechanisms of action of homeopathic drugs: an overview. Mol Cell Biochem 2003; 253: 339-345
  • 44 Khuda-Bukhsh AR. Current trends in high dilution research with particular reference to gene regulatory hypothesis. Nucleus 2014; 57: 3-17
  • 45 Dei A, Bernardini S. Hormetic effects of extremely diluted solutions on gene expression. Homeopathy 2015; 104: 116-122
  • 46 Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. Homeopathy 2015; 104: 139-160
  • 47 Teixeira MZ. Isopathic use of auto-sarcode of DNA as anti-miasmatic homeopathic medicine and modulator of gene expression?. Homeopathy 2019; 108: 139-148