CC BY-NC-ND 4.0 · SynOpen 2020; 04(02): 33-37
DOI: 10.1055/s-0039-1690897
letter
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/) (2020) The Author(s)

Creation of 4-Quinolone Thioether and Selenoether Derivatives via Pd-NHC Catalysed Cross-Coupling Reaction

Prasanjit Ghosh
,
Sajal Das
We thank the DST, New Delhi for financial support (EMR/2016/001250).
Weitere Informationen

Publikationsverlauf

Received: 03. März 2020

Accepted after revision: 27. März 2020

Publikationsdatum:
12. Mai 2020 (online)


Abstract

Pd-NHC catalysed direct sulfenylation and selenylation of 3-iodo-4-quinolones has been developed. This protocol provides an alternative route for the construction of ipso-C–S and C–Se bond formation in 4-quinolones under aerobic conditions.

Supporting Information

 
  • References

    • 1a Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 1b Mansy SS, Cowan JA. Acc. Chem. Res. 2004; 37: 719
    • 1c Punniyamurthy T. Chem. Rev. 2005; 105: 2329
    • 1d Kondo T, Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 1e Oida S, Tajima Y, Konosu T, Nakamura Y, Somada A, Tanaka T, Habuki S, Harasaki T, Kamai Y, Fukuoka T, Ohya S, Yasuda H. Chem. Pharm. Bull. 2000; 48: 694
    • 1f Raghuvanshi DS, Verma N. RSC Adv. 2017; 7: 22860
    • 1g Qi H, Zhang T, Wan K, Luo M. J. Org. Chem. 2016; 81: 4262
    • 1h Kumaraswamy G, Raju R, Narayanarao V. RSC Adv. 2015; 5: 22718
    • 1i Li J, Cai ZJ, Wang SY, Ji SJ. Org. Biomol. Chem. 2016; 14: 9384
    • 1j Gao Z, Zhu X, Zhang R. RSC Adv. 2014; 4: 19891
    • 1k Yang FL, Tian SK. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 2a Kosugi M, Shimizu T, Migita T. Chem. Lett. 1978; 13
    • 2b Migita T, Shimizu T, Asami Y, Shiobara J, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
  • 3 Liu G, Huth JR, Olejniczak ET, Mendoza F, Fesik SW, Von Genldern TW. J. Med. Chem. 2001; 44: 1202
  • 4 Nielsen SF, Nielsen EO, Olsen GM, Liljefors T, Peters D. J. Med. Chem. 2000; 43: 2217
  • 5 Pasquini S, Mugnaini C, Tintori C, Botta M, Trejos A, Arvela RK, Larhed M, Witvrouw M, Michiels M, Christ F, Debyser Z, Corelli F. J. Med. Chem. 2008; 51: 5125
  • 6 De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2004; 47: 6120
    • 7a Santos EA, Hamel E, Bai R, Burnett JC, Tozatti CS, Bogo D, Perdomo RT, Antunes AM, Marques MM, Matos MF. C, de Lima DP. Bioorg. Med. Chem. Lett. 2013; 23: 4669
    • 7b Milloisand C, Diaz P. Org. Lett. 2000; 2: 1705
    • 7c Back TG, Moussa Z. J. Am. Chem. Soc. 2003; 125: 13455
    • 7d Andersson CM, Hallberg A, Hogberg T. Adv. Drug Res. 1996; 28: 65
    • 7e Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL, Park K, Sanders BB, Smith CL, Taylor R. JAMA, J. Am. Med. Assoc. 1996; 276: 1957
    • 7f Engman L, Cotgreave I, Angulo M, Taylor CW, Paine-Murrieta GD, Powis G. Anticancer Res. 1997; 17: 4599
    • 7g Goudgaon NM, Naguib FN, Kouni MH, Schinazi RF. J. Med. Chem. 1993; 36: 4250
    • 7h Nedel F, Campos VF, Alves D, McBride AJ. A, Dellagostin OA, Collares T, Savegnago L, Seixas FK. Life Sci. 2012; 91: 345
    • 8a Nogueira CW, Rocha JB. T. Arch. Toxicol. 2011; 85: 1313
    • 8b Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 9a Nogueira CW, Rocha JB. T. J. Braz. Chem. Soc. 2010; 21: 2055
    • 9b Muller A, Cadenas E, Graf P, Sies H. Biochem. Pharmacol. 1984; 33: 3235
    • 9c Dawson DA, Masayasu H, Graham DI, Macrae IM. Neurosci. Lett. 1995; 185: 65
    • 9d Saito I, Asano T, Sano K, Takakura K, Abe H, Yoshimoto T, Kikuchi H, Ohta T, Ishibashi S. Neurosurgery 1998; 42: 269
    • 9e Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, Yasuhara H. Cerebrovasc. Dis. 1999; 9: 112
    • 10a Ajiki K, Hirano M, Tanaka K. Org. Lett. 2005; 7: 4193
    • 10b Liao Y, Jiang P, Chen S, Qi H, Deng GJ. Green Chem. 2013; 15: 3302
    • 10c Pandya VG, Mhaske SB. Org. Lett. 2014; 16: 3836
    • 10d Sun J, Wang Y, Pan Y. Org. Biomol. Chem. 2015; 13: 3878
    • 10e Yang W, Yang S, Li P, Wang L. Chem. Commun. 2015; 51: 7520
    • 10f Zhang S, Qian P, Zhang M, Hu M, Cheng J. J. Org. Chem. 2010; 75: 6732
  • 11 Crumplin GC, Midgley JM, Smith JT. Top. Antibiot. Chem. 1980; 3: 9
  • 12 Leonard NJ, Herbrandson HF, Van Heyningen EM. J. Am. Chem. Soc. 1946; 68: 1279
  • 13 Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa J. Tetrahedron Lett. 1989; 30: 4991
  • 14 Boteva AA, Krasnykh OP. Chem. Heterocycl. Compd. 2009; 45: 757
  • 15 Huang LJ, Hsieh MC, Teng CM, Lee KH, Kuo SC. Bioorg. Med. Chem. 1998; 6: 1657
  • 16 Chengcai X, Zhenjiang W, Yong Y, Wenbo Y, Hanxiao L, Chao S, Pengfei Z. Chem. Asian J. 2016; 11: 360
    • 17a Sarkar S, Ghosh P, Misra A, Das S. Synth. Commun. 2015; 45: 2386
    • 17b Gupta S, Ghosh P, Dwivedi S, Das S. RSC Adv. 2014; 4: 6254
    • 17c Ghosh P, Ganguly B, Das S. Appl. Organomet. Chem. 2017; e4173
    • 17d Ghosh P, Nandi AK, Das S. Tetrahedron Lett. 2018; 59: 2025
    • 17e Ghosh P, Das S. ChemistrySelect 2018; 3: 8624
    • 17f Ghosh P, Nandi AK, Chhetri G, Das S. J. Org. Chem. 2018; 83: 12411
    • 17g Ghosh P, Chhetri G, Nandi AK, Sarkar S, Saha T, Das S. New J. Chem. 2019; 43: 10959
    • 18a Gupta S, Basu B, Das S. Tetrahedron 2013; 69: 122
    • 18b Gupta S, Ganguly B, Das S. RSC Adv. 2014; 4: 41148
  • 19 2-Phenyl-3-(phenylthio)quinolin-4(1H)-one (2a); Typical Procedure: 3-Iodo-2-phenyl-substituted 4-quinolone (0.25 mmol), thiophenol (0.375 mmol), DBU (0.5 mmol, 76 mg) and Pd-NHC (0.5 mol%, 1.2 mg) were dissolved in DMF (2 mL) in a 25 mL round-bottomed flask and the mixture was heated to 80 °C for 1–2 h. The mixture was then cooled, diluted with water, and the product was extracted with ethyl acetate (3 × 20 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was then purified by column chromatography, eluting with petroleum ether/ethyl acetate to give the product as a white solid (mp 191–193 °C). 1H NMR (300 MHz, DMSO-d 6): δ = 12.29 (s, 1 H), 8.11 (d, J = 7.8 Hz, 1 H), 7.71–7.73 (m, 2 H), 7.48–7.54 (m, 5 H), 7.41 (s, 1 H), 7.14–7.20 (m, 2 H), 6.97–7.05 (m, 3 H). 13C NMR (75 MHz, DMSO-d 6): δ = 175.5, 139.9, 138.8, 135.5, 132.8, 130.2, 129.1, 129.0, 128.5, 125.9, 125.5, 124.8, 124.7, 124.5, 119.2, 108.5. HRMS (ESI+): m/z [M + H]+ calcd for C21H16NOS: 330.0952; found: 330.0972.