Synthesis 2020; 52(11): 1634-1642
DOI: 10.1055/s-0039-1690837
paper
© Georg Thieme Verlag Stuttgart · New York

Metal- and Oxidant-Free Electrochemical Oxidative Desulfurization C–O Coupling of Thiourea-Type Compounds with Alcohols

Zheng-He Zhu
,
Ming-Zhe Ren
,
Bao-Qian Cao
,
Zheng-Jun Quan
,
Xi-Cun Wang
Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. of China   Email: quanzhengjun@hotmail.com   Email: wangxicun@nwnu.edu.cn
› Author Affiliations
We are thankful for the financial support from the National Natural Science Foundation of China (No. 21562036) and the LongYuan Youth Innovative and Entrepreneurial Talents Project (the Key Talent Projects of Gansu Province, [2019]39).
Further Information

Publication History

Received: 07 January 2020

Accepted after revision: 04 February 2020

Publication Date:
24 February 2020 (online)


Abstract

An efficient desulfurization C–O coupling reaction of 3,4-dihydropyrimidine-2(1H)-thiones (including thioureas) with alcohols was developed under electrochemical oxidation conditions. Herein, transition­-metal catalysts and additives are not required and the alcohol is both the solvent and the alkoxy donor.

Supporting Information

 
  • References

    • 1a Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
    • 1b Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594; Angew. Chem. 2018, 130, 5694
    • 1c Folgueiras-Amador AA, Qian X.-Y, Xu H.-C, Wirth T. Chem. Eur. J. 2018; 24: 487
    • 1d Huang C, Qian X.-Y, Xu H.-C. Angew. Chem. Int. Ed. 2019; 58: 6650; Angew. Chem. 2019, 131, 6722
    • 1e Jiao K.-J, Xing Y.-K, Yang Q.-L, Qiu H, Mei T.-S. Acc. Chem. Res. 2020; DOI: in press; DOI 10.1021/acs.accounts.9b00603.
    • 1f Qiu Y.-A, Struwe JL, Ackermann L. Synlett 2019; 30: 1164
    • 1g Meyer TH, Finger LH, Gandeepan P, Ackermann L. Trends Chem. 2019; 1: 63
    • 1h Laudadio G, de A Bartolomeu A, Verwijlen LM. H. M, Cao Y, de Oliveira KT, Noël T. J. Am. Chem. Soc. 2019; 141: 11832
  • 2 Pan F, Shi Z.-J. ACS Catal. 2014; 4: 280
  • 6 Cherkasov A, Jonsson M. J. Chem. Inf. Comput. Sci. 2000; 40: 1222
    • 7a Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 7b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 7c Ackermann L. Chem. Commun. 2010; 46: 4886
    • 7d Xu L.-M, Li B.-J, Yang Z, Shi Z.-J. Chem. Soc. Rev. 2010; 39: 712
  • 8 Otsuka S, Nogi K, Yorimitsu H. Top. Curr. Chem. 2018; 376: 199
  • 9 Liebeskind LS, Srogl J. J. Am. Chem. Soc. 2000; 122: 11260
  • 10 Metzger A, Melzig L, Despotopoulou C, Knochel P. Org. Lett. 2009; 11: 4228
  • 11 Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329; Angew. Chem. 2014, 126, 9483
  • 12 Lian Z, Bhawal BN, Yu P, Morandi B. Science 2017; 356: 1059
  • 14 Otsuka S, Yorimitsu H, Osuka A. Chem. Eur. J. 2015; 21: 14703
    • 15a Mehta VP, Modha SG, Van der Eycken E. J. Org. Chem. 2009; 74: 6870
    • 15b Hintermann L, Schmitz M, Chen Y. Adv. Synth. Catal. 2010; 352: 2411
    • 15c Eberhart AJ, Imbriglio JE, Procter DJ. Org. Lett. 2011; 13: 5882
    • 15d Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 7510; Angew. Chem. 2014, 126, 7640
    • 16a Liebeskind LS, Srogl J. Org. Lett. 2002; 4: 979
    • 16b Alphonse F.-A, Suzenet F, Keromnes A, Lebret B, Guillaumet G. Org. Lett. 2003; 5: 803
    • 16c Counceller KL, Stambuli JP. C. M. Org. Lett. 2009; 11: 1457
    • 16d Begouin J.-M, Gosmini C. Chem. Commun. 2010; 46: 5972
    • 16e Melzig L, Metzger A, Knochel P. Chem. Eur. J. 2011; 17: 2948
    • 16f Modha SG, Trivedi JC, Mehta VP, Ermolat’ev DS, Van der Eycken E. J. Org. Chem. 2011; 76: 846
    • 17a Hooper JF, Young RD, Pernik I, Weller AS, Willis MC. Chem. Sci. 2013; 4: 1568
    • 17b Pan F, Wang H, Shen P.-X, Shi Z.-J. Chem. Sci. 2013; 4: 1573
    • 17c Creech GS, Kwon O. Chem. Sci. 2013; 4: 2670
  • 18 Zhang L.-M, Si X.-J, Yang Y.-Y, Witzel S, Sekine K, Rudolph M, Rominger F, Hashmi AS. K. ACS Catal. 2019; 9: 6118
  • 19 Watanabe M, Koike H, Ishiba T, Okada T. Bioorg. Med. Chem. 1997; 5: 437
    • 20a Capdeville R, Buchdunger E, Zimmermann J, Matter A. Nat. Rev. Drug Discovery 2002; 1: 493
    • 20b Quan Z.-J, Zhang Z, Da Y.-X. Chin. J. Org. Chem. 2009; 29: 876
    • 21a Quan Z.-J, Hu W.-H, Jia X.-D, Zhang Z, Da Y.-X. Adv. Synth. Catal. 2012; 354: 2939
    • 21b Yan Z.-F, Quan Z.-J, Da Y.-X, Zhang Z. Chem. Commun. 2014; 50: 13555
    • 21c Quan Z.-J, Lv Y, Jing F.-Q, Jia X.-D, Huo C.-D. Adv. Synth. Catal. 2014; 356: 325
    • 22a Phan NH. T, Kim H, Shin H, Lee H.-S, Sohn J.-H. Org. Lett. 2016; 18: 5154
    • 22b Kim H, Lee J, Shin H, Sohn J.-H. Org. Lett. 2018; 20: 1961
    • 22c Matloobi M, Kappe CO. J. Comb. Chem. 2007; 9: 275
    • 22d Gershon H, Grefig AT, Scala AA. J. Heterocycl. Chem. 1983; 20: 219
    • 23a Quan Z.-J, Jing F.-Q, Zhang Z, Da Y.-X, Wang X.-C. Chin. J. Chem. 2013; 31: 1495
    • 23b Wang X.-C, Yang G.-J, Jia X.-D, Zhang Z, Da Y.-X, Quan Z.-J. Tetrahedron 2011; 67: 3267
  • 25 Ai C.-R, Shen H.-W, Song D.-G, Li Y.-J, Yi X, Wang Z, Ling F, Zhong W.-H. Green Chem. 2019; 21: 5528
    • 26a Berlinck RG. S, Kossuga MH. Nat. Prod. Rep. 2005; 22: 516
    • 26b Berlinck RG. S, Burtoloso AC. B, Trindade-Silva AE, Romminger S. Nat. Prod. Rep. 2010; 27: 1871
  • 27 Sauermann N, Meyer TH, Tian C. J. Am. Chem. Soc. 2017; 139: 18452
  • 28 Huang P.-F, Wang P, Tang S, Fu Z.-J, Lei A.-W. Angew. Chem. Int. Ed. 2018; 57: 8115; Angew. Chem. 2018, 130, 8247
  • 29 Wang L, Ma Z.-G, Wei X.-J, Meng Q.-Y, Yang D.-T, Du S.-F, Chen Z.-F, Wu L.-Z, Liu Q. Green Chem. 2014; 16: 3752
  • 30 Yoon SB, Chun EJ, Noh YR. Bull. Korean Chem. Soc. 2013; 34: 2819
  • 31 Bruce WM. J. Am. Chem. Soc. 1904; 26: 449