Synthesis 2020; 52(04): 489-503
DOI: 10.1055/s-0039-1690703
short review
© Georg Thieme Verlag Stuttgart · New York

Pyrylium Salts: Selective Reagents for the Activation of Primary Amino Groups in Organic Synthesis

Yue Pang
a   Department of Organometallic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany   Email: cornella@kofo.mpg.de
,
Daniel Moser
a   Department of Organometallic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany   Email: cornella@kofo.mpg.de
b   Current address: University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
,
a   Department of Organometallic Chemistry, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany   Email: cornella@kofo.mpg.de
› Author Affiliations
We would like to thank the Max-Planck-Gesellschaft, Max-Planck-Institute für Kohlenforschung, Fonds der Chemischen Industrie (VCI) and the CSC scholarship (Y. P.).
Further Information

Publication History

Received: 26 August 2019

Accepted after revision: 11 October 2019

Publication Date:
11 October 2019 (online)


Published as part of the Bürgenstock Special Section 2019 Future Stars in Organic Chemistry

Abstract

Primary amino groups represent an ubiquitous category of functionalities in synthetic building blocks, drugs, and natural products. Therefore, such functionalities offer themselves as perfect handles for late-stage functionalization, and the development of robust and efficient strategies to transform these groups is highly desirable. Despite the extremely challenging activation of the C–N bond, the past few years have witnessed the rapid development of deaminative transformations using pyrylium salts as activating reagents. In most cases, the pyridinium salts formed were activated by single electron transfer, giving alkyl radicals which were used in a series of transformations via nickel and photoredox catalysis. This short review aims to give an overview to related properties of pyrylium salts, their historical significance, and summarize the recent progress in the field of deaminative transformations using these reagents.

1 Introduction

2 Pyrylium and Pyridinium Salts

2.1 Historical Context

2.2 Structure and Reactivity

2.3 Pyrylium Synthesis

2.4 Historical Context of the Reactivity of Pyridinium Salts

3 Recent Progress on Deaminative Transformations of Primary Amino Groups by Pyrylium Salts

3.1 Metal-Catalyzed Cross-Couplings

3.2 Photoredox Catalysis and Photoinduced Reactions for C–C Bond Constructions

3.3 Borylations

3.4 SNAr Functionalization of Aminoheterocycles

4 Conclusion

 
  • References

  • 1 Eastgate MD, Schmidt MA, Fandrick KR. Nat. Rev. Chem. 2017; 1: 0016
  • 2 Homogeneous Catalysis for Unreactive Bond Activation. Shi Z.-J. Wiley-VCH; Weinheim: 2014
    • 3a Ouyang K, Hao W, Zhang WX, Xi Z. Chem. Rev. 2015; 115: 12045
    • 3b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
  • 4 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
    • 5a Amines: Synthesis, Properties and Applications . Lawrence SA. Cambridge University Press; Cambridge: 2004
    • 5b Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008
    • 6a Mo F, Dong G, Zhang Y, Wang J. Org. Biomol. Chem. 2013; 11: 1582
    • 6b He L, Qiu G, Gao Y, Wu J. Org. Biomol. Chem. 2014; 12: 6965
    • 6c Wu G, Deng Y, Wu C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 10510
    • 7a Blakey SB, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 6046
    • 7b Buszek KR, Brown N. Org. Lett. 2007; 9: 707
    • 7c Maity P, Shacklady-McAtee DM, Yap GP. A, Sirianni ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 7d Shacklady-McAtee DM, Roberts KM, Basch CH, Song Y.-G, Watson MP. Tetrahedron 2014; 70: 4257
    • 7e Hu J, Sun H, Cai W, Pu X, Zhang Y, Shi Z. J. Org. Chem. 2016; 81: 14
    • 7f Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
    • 7g Wang D.-Y, Yang Z.-K, Wang C, Zhang A, Uchiyama M. Angew. Chem. Int. Ed. 2018; 57: 3641
    • 7h Rand AW, Montgomery J. Chem. Sci. 2019; 10: 5338
    • 8a Tobisu M, Nakamura K, Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
    • 8b Wang S.-E, Wang L, He Q, Fan R. Angew. Chem. Int. Ed. 2015; 54: 13655
    • 8c Cong X, Fan F, Ma P, Luo M, Chen H, Zeng X. J. Am. Chem. Soc. 2017; 139: 15182
    • 8d Han D, He Q, Fan R. Nat. Commun. 2018; 9: 3423
    • 8e Zhang Z, Zheng D, Wan Y, Zhang G, Bi J, Liu Q, Liu T, Shi L. J. Org. Chem. 2018; 83: 1369
    • 8f Cao Z.-C, Li X.-L, Luo Q.-Y, Fang H, Shi Z.-J. Org. Lett. 2018; 20: 1995
    • 8g Zhang Z.-B, Ji C.-L, Yang C, Chen J, Hong X, Xia J.-B. Org. Lett. 2019; 21: 1226
    • 9a Katritzky AR. Tetrahedron 1980; 36: 679
    • 9b Katritzky AR, Marson CM. Angew. Chem. Int. Ed. 1984; 23: 420
    • 9c Balaban, A. T. 2,4,6-Triphenylpyrylium Tetrafluoroborate, In e-EROS Encyclopedia of Reagents for Organic Synthesis [Online]; Wiley & Sons, Posted October 15, 2005; DOI: 10.1002/047084289X.rn00618.
    • 10a Kong D, Moon PJ, Lundgren RJ. Nat. Catal. 2019; 2: 473
    • 10b He F.-S, Ye S, Wu J. ACS Catal. 2019; 9: 8943
  • 11 von Kostanecki S, Rossbach G. Ber. Dtsch. Chem. Ges. 1896; 29: 1488
  • 12 Dilthey W. J. Prakt. Chem. 1916; 94: 53
  • 13 Grigor’ev VP, Ekilik VV. Zh. Prikl. Khim. 1969; 41
  • 14 Bawn CE. H, Carruthers R, Ledwith A. J. Chem. Soc., Chem. Commun. 1965; 522
  • 15 Rulliere C, Declemy A, Balaban AT. Can. J. Phys. 1985; 63: 191
  • 16 Hartmann H, Förster D. J. Prakt. Chem. 1971; 313
    • 17a Pyrylium Salts: Syntheses, Reactions and Physical Properties, Vol. 2. Balaban AT, Dinculescu A, Dorofeenko GN, Fischer GW, Koblik AV, Mezheritskii VV, Schroth W. Academic Press; 1982
    • 17b Balaban TS, Balaban AT. Pyrylium Salts . In Science of Synthesis, Vol. 15. Georg Thieme Verlag; Stuttgart: 2004: 11-200
    • 18a Dimroth K. Angew. Chem. 1960; 72: 331
    • 18b Dulenko VI, Tolkunov SV. Chem. Heterocycl. Compd. 1987; 23: 730
  • 19 Belosludtsev YY, Borer BC, Taylor RJ. K. Synthesis 1991; 320
  • 20 Miranda MA, Garcia H. Chem. Rev. 1994; 94: 1063
  • 21 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 22a Farid S, Shealer SE. J. Chem. Soc., Chem. Commun. 1973; 677
    • 22b Martiny M, Steckhan E, Esch T. Chem. Ber. 1993; 126: 1671
    • 22c Riener M, Nicewicz DA. Chem. Sci. 2013; 4: 2625
    • 23a Wiest O, Steckhan E. Angew. Chem. Int. Ed. 1993; 32: 901
    • 23b Perkowski AJ, Cruz CL, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 15684
  • 24 Akaba R, Sakuragi H, Tokumaru K. J. Chem. Soc., Perkin Trans. 2 1991; 291
  • 25 Akaba R, Niimura Y, Fukushima T, Kawai Y, Tajima T, Kuragami T, Negishi A, Kamata M, Sakuragi H, Tokumaru K. J. Am. Chem. Soc. 1992; 114: 4460
    • 26a Bird CW. Tetrahedron 1986; 42: 89
    • 26b Omelchenko IV, Shishkin OV, Gorb L, Leszczynski J, Fias S, Bultinck P. Phys. Chem. Chem. Phys. 2011; 13: 20536
  • 27 Spitzner R, Radeglia R, Schroth W. Tetrahedron Lett. 1985; 26: 3967
  • 28 Van der Plas HC. Acc. Chem. Res. 1978; 11: 462
  • 29 Dimroth K, Berndt A, Reichardt C. Org. Synth., Coll. Vol. 5 . John Wiley & Sons; London: 1973: 1128
    • 31a Märkl G. Angew. Chem. Int. Ed. 1966; 5: 846
    • 31b Breit B. Chem. Commun. 1996; 2071
    • 31c Müller C, Vogt D. Dalton Trans. 2007; 5505
    • 32a Katritzky AR, Lloyd JM, Patel RC. Chem. Scr. 1981; 18: 256
    • 32b Katritzky AR, Leahy DE. J. Chem. Soc., Perkin Trans. 2 1985; 171
  • 33 Dimroth K, Reichardt C, Vogel K. Org. Synth., Coll. Vol. 5 . John Wiley & Sons; London: 1973: 1135
  • 34 Bos HJ. T, Arens JF. Recl. Trav. Chim. Pays-Bas 1963; 82: 845
    • 35a Lombard R, Stephan JP. Bull. Soc. Chem. Fr. 1957; 1369
    • 35b Lombard R, Stephan JP. Bull. Soc. Chem. Fr. 1958; 1458
  • 36 VanAllan JA, Reynolds GA. J. Org. Chem. 1968; 33: 1102
  • 37 Alfonzo E, Alfonso FS, Beeler AB. Org. Lett. 2017; 19: 2989
    • 38a Strating J, Keijer JH, Molenaar E, Brandsma L. Angew. Chem. Int. Ed. 1962; 1: 399
    • 38b Dimroth K, Kinzebach W, Soyka M. Chem. Ber. 1966; 99: 2351
    • 38c Greulich TW, Daniliuc CG, Studer A. Org. Lett. 2015; 17: 254
    • 39a Becher J. Org. Synth. 1979; 59: 79
    • 39b Moser D, Duan Y, Wang F, Ma Y, O’Neill MJ, Cornella J. Angew. Chem. Int. Ed. 2018; 57: 11035
  • 40 Milov AA, Starikov AG, Gridin MK, Minyaev RM. Russ. J. Gen. Chem. 2007; 77: 1373
    • 41a Katritzky AR, Thind SS. J. Chem. Soc., Perkin Trans. 1 1980; 1895
    • 41b Katritzky AR, Lloyd JM, Patel RC. J. Chem. Soc., Perkin Trans. 1 1982; 117
    • 42a Eweiss NF, Katritzky AR, Nie P.-L, Ramsden CA. Synthesis 1977; 634
    • 42b Katritzky AR, Gruntz U, Mongelli N, Rezende MC. J. Chem. Soc., Chem. Commun. 1978; 133
    • 42c Katritzky AR, Bapat JB, Blade RJ, Leddy BP, Nie P.-L, Ramsden CA, Thind SS. J. Chem. Soc., Perkin Trans. 1 1979; 418
    • 42d Katritzky AR, Chermprapai A, Patel RC. J. Chem. Soc., Chem. Commun. 1979; 238
    • 42e Katritzky AR, Gruntz U, Ikizler AA, Kenny DH, Leddy BP. J. Chem. Soc., Perkin Trans. 1 1979; 436
    • 42f Katritzky AR, Gruntz U, Kenny DH, Rezende MC, Sheikh H. J. Chem. Soc., Perkin Trans. 1 1979; 430
    • 42g Katritzky AR, Lewis J, Nie P.-L. J. Chem. Soc., Perkin Trans. 1 1979; 442
    • 42h Katritzky AR, Liso G, Lunt E, Patel RC, Thind SS, Zia A. J. Chem. Soc., Perkin Trans. 1 1980; 849
    • 42i Katritzky AR, Marzorati L. J. Org. Chem. 1980; 45: 2515
    • 42j Katritzky AR, Saba A, Patel RC. J. Chem. Soc., Perkin Trans. 1 1981; 1492
    • 42k Katritzky AR, Akram Kashmiri M, Wittmann DK. Tetrahedron 1984; 40: 1501
    • 43a Katritzky AR, Musumarra G. Chem. Soc. Rev. 1984; 13: 47
    • 43b Katritzky AR, de Ville GZ, Patel RC. Tetrahedron Lett. 1980; 21: 1723
    • 44a Katritzky AR, Eweiss NF, Nie P.-L. J. Chem. Soc., Perkin Trans. 1 1979; 433
    • 44b Katritzky AR, Thind SS. J. Chem. Soc., Perkin Trans. 1 1980; 865
    • 44c Katritzky AR, Cozens AJ. J. Chem. Soc., Perkin Trans. 1 1983; 2611
    • 44d Katritzky AR, Wittmann DK, Chen J.-L, Marson CM, Ossana A. J. Heterocycl. Chem. 1986; 23: 865
  • 45 Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 46a Levin MD, Kim S, Toste FD. ACS Cent. Sci. 2016; 2: 293
    • 46b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 47a Choi J, Fu GC. Science 2017; 356: 7230
    • 47b Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 48 Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
    • 49a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 49b Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
    • 50a Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
    • 50b Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
  • 51 Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
  • 53 Plunkett S, Basch CH, Santana SO, Watson MP. J. Am. Chem. Soc. 2019; 141: 2257
    • 54a Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 54b Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 55a Ni S, Li C.-X, Mao Y, Han J, Wang Y, Yan H, Pan Y. Sci. Adv. 2019; 5: 9516
    • 55b Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M. Chem. Sci. 2019; 10: 4430
    • 55c Liao J, Basch CH, Hoerrner ME, Talley MR, Boscoe BP, Tucker JW, Garnsey MR, Watson MP. Org. Lett. 2019; 21: 2941
    • 55d Martin-Montero R, Yatham VR, Yin H, Davies J, Martin R. Org. Lett. 2019; 21: 2947
    • 55e Yi J, Badir SO, Kammer LM, Ribagorda M, Molander GA. Org. Lett. 2019; 21: 3346
  • 56 Hoerrner ME, Baker KM, Basch CH, Bampo EM, Watson MP. Org. Lett. 2019; 21: 7356
  • 57 Li C.-L, Jiang X, Lu L.-Q, Xiao W.-J, Wu X.-F. Org. Lett. 2019; 21: 6919
  • 58 Minisci F, Fontana F, Vismara E. J. Heterocycl. Chem. 1990; 27: 79
  • 59 Klauck FJ. R, James MJ, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336
  • 60 Ociepa M, Turkowska J, Gryko D. ACS Catal. 2018; 8: 11362
  • 61 Zhang MM, Liu F. Org. Chem. Front. 2018; 5: 3443
  • 62 Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 5697
  • 63 Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
    • 64a Ikeda Y, Nakamura T, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2002; 124: 6514
    • 64b Zhu N, Zhao J, Bao H. Chem. Sci. 2017; 8: 2081
  • 65 Jiang X, Zhang MM, Xiong W, Lu LQ, Xiao WJ. Angew. Chem. Int. Ed. 2019; 58: 2402
  • 66 Yang ZK, Xu NX, Wang C, Uchiyama M. Chem. Eur. J. 2019; 25: 5433
  • 67 Schweitzer-Chaput B, Horwitz MA, de Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
  • 68 Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
  • 69 James MJ, Strieth-Kalthoff F, Sandfort F, Klauck FJ. R, Wagener F, Glorius F. Chem. Eur. J. 2019; 25: 8240
  • 70 Klauck FJ. R, Yoon H, James MJ, Lautens M, Glorius F. ACS Catal. 2019; 9: 236
  • 71 Zhu ZF, Zhang MM, Liu F. Org. Biomol. Chem. 2019; 17: 1531
  • 72 Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
    • 73a Candish L, Teders M, Glorius F. J. Am. Chem. Soc. 2017; 139: 7440
    • 73b Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
    • 74a Li C, Wang J, Barton LM, Yu S, Tian M, Peters DS, Kumar M, Yu AW, Johnson KA, Chatterjee AK, Yan M, Baran PS. Science 2017; 356: 7355
    • 74b Hu D, Wang L, Li P. Org. Lett. 2017; 19: 2770
  • 75 Wu J, He L, Noble A, Aggarwal VK. J. Am. Chem. Soc. 2018; 140: 10700
  • 76 Sandfort F, Strieth-Kalthoff F, Klauck FJ. R, James MJ, Glorius F. Chem. Eur. J. 2018; 24: 17210
  • 77 Hu J, Wang G, Li S, Shi Z. Angew. Chem. Int. Ed. 2018; 57: 15227
    • 78a Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA. J. Med. Chem. 2016; 59: 4385
    • 78b Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443