CC BY-ND-NC 4.0 · SynOpen 2019; 03(04): 164-168
DOI: 10.1055/s-0039-1690339
letter
Copyright with the author(s) (2019) The author(s)

Divergent Pathways for Reactions of 3-Formylchromone with Cyclic Secondary Amines in Alcoholic Media

Kirill S. Korzhenko
,
,
Vitaly A. Osyanin
Department of Organic Chemistry, Samara State Technical University, 244 Molodogvardeyskaya St., 443100 Samara, Russian Federation   Email: VOsyanin@mail.ru
,
Yuri N. Klimochkin
› Author Affiliations
This work was funded by the Russian Foundation for Basic Research (project no. 17-03-01158).
Further Information

Publication History

Received: 27 November 2019

Accepted: 28 November 2019

Publication Date:
11 December 2019 (online)


Abstract

Reaction of 3-formylchromone with cyclic secondary amines in methanol results in (E)-2-methoxy-3-(R2N-methylene)chroman-4-ones, while use of ethanol leads to (E)-2-morpholino-3-(morpholino­methylene)chroman-4-one or enaminoketones as dihydropyran ring-opening products. The solubility of the formed products in alcoholic media is postulated to be a key factor that determines the reaction pathway.

Supporting Information

 
  • References and Notes


    • For selected reviews on medicinal chemistry of chromones, see:
    • 1a Reis J, Gaspar A, Mihazes N, Borges F. J. Med. Chem. 2017; 60: 7941
    • 1b Silva CF. M, Batista VF, Pinto DC. G. A, Silva AM. S. Expert Opin. Drug Discovery 2018; 19: 795
    • 1c Duan Y.-d, Jiang Y.-y, Guo F.-x, Chen L.-x, Xu L.-l, Zhang W, Liu B. Fitoterapia 2019; 135: 114
    • 1d Gaspar A, Matos MJ, Garrido J, Uriarte E. Chem. Rev. 2014; 114: 4960
    • 1e Mohadeszadeh M, Iranshahi M. Mini-Rev. Med. Chem. 2017; 17: 1377
    • 1f Sharma SK, Kumar S, Chand K, Kathuria A, Gupta A, Jain R. Curr. Med. Chem. 2011; 18: 3825
    • 1g Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Eur. J. Med. Chem. 2017; 142: 213
  • 2 For a comprehensive review on the synthesis and biological activity of 4-chromanones, see: Emami S, Ghanbarimasir Z. Eur. J. Med. Chem. 2015; 93: 539
  • 3 For a seminal report on the use of 3-formylchromone as a precursor for medicines, see: Dückert H, Pries V, Khedkar V, Menninger S, Bruss H, Bird AW, Maliga Z, Brockmeyer A, Janning P, Hyman A, Grimme S, Schürmann M, Preut H, Hübel K, Ziegler S, Kumar K, Waldmann H. Nat. Chem. Biol. 2012; 8: 179

    • For selected reviews on 3-formylchromones, see:
    • 4a Sabitha G. Aldrichimica Acta 1996; 29: 15
    • 4b Ghosh CK, Patra A. J. Heterocycl. Chem. 2008; 45: 1529
    • 4c Ali TEl-S, Ibrahim MA, El-Gohary NM, El-Kazak AM. Eur. J. Chem. 2013; 4: 311
    • 4d Ghosh CK, Chakraborty A. ARKIVOC 2015; (vi): 288
    • 4e Gašparová R, Lácová M. Molecules 2005; 10: 937
    • 4f Plaskon AS, Grygorenko OO, Ryabukhin SV. Tetrahedron 2012; 68: 2743

      For more recent examples, see:
    • 5a Liao J.-Y, Yap WJ, Wu J, Wong MW, Zhao Y. Chem. Commun. 2017; 53: 9067
    • 5b Poudel TN, Lee YR, Kim SH. Green Chem. 2015; 17: 4579
    • 5c Baral ER, Sharma K, Akhtar MS, Lee YR. Org. Biomol. Chem. 2016; 14: 10285
    • 5d El-Gohary NM, Ibrahim MA, El-Sawy ER, Abdel-fatah NA. J. Heterocycl. Chem. 2016; 54: 1467
    • 5e Gupta S, Khurana JM. Green Chem. 2017; 19: 4153
    • 6a Ghosh CK, Khan S. Synthesis 1981; 719
    • 6b Dalvi NR, Shelke SN, Karale BK, Gill HC. Synth. Commun. 2007; 37: 1421
    • 6c Shelke SN, Pawar YJ, Pawar SB, Gholap SS, Gill CH. J. Indian Chem. Soc. 2011; 88: 461
    • 6d Halnor VB, Dalvi NR, Joshi NS, Gill CH, Karale BK. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2006; 45: 288
  • 7 Synthesis of Products 2–4; General Procedure A solution of cyclic secondary amine (1 mmol for 3; 2 mmol for 2; 4 mmol for 4) in MeOH (1.5 mL for 3) or EtOH (1.5 mL for 2 and 4) was added dropwise to a stirred suspension of 3-formylchromone 1 (174 mg, 1 mmol for 2 and 3; 348 mg, 2 mmol for 4) in MeOH (1.5 mL for 3) or EtOH (1.5 mL for 2, 4 mL for 4) in 10 min. The resulting mixture was stirred at room temperature for 2 h (for 2 and 3) or 1 h (for 4), then was stored at –30 °C overnight. The precipitate formed was filtered off, washed with ice-cold MeOH, and then recrystallized from the appropriate solvent.
  • 8 (E)-1-(2-Hydroxyphenyl)-3-(pyrrolidin-1-yl)prop-2-en-1-one (2a)Yield: 115 mg (53%); yellow crystals; mp 135–137 °C (benzene). IR (ATR): 3300–2500 (OH), 1632 (C=O), 1603, 1587, 1512, 1435, 1350, 1317, 1263, 1219, 1188, 1177, 1144, 1103, 1067, 1026, 1003, 953, 939, 914, 810, 745 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 1.79–1.86 (m, 2 H, CH2), 1.90–1.97 (m, 2 Н, CH2), 3.28–3.32 (m, 2 Н, CH2N), 3.57–3.61 (m, 2 Н, CH2N), 5.83 (d, J = 12.1 Hz, 1 Н, CH=CHN), 6.76–6.80 (m, 2 Н, Ar), 7.29–7.34 (m, 1 Н, Ar), 7.84 (d, J = 7.8 Hz, 1 Н, Ar), 8.04 (d, J = 12.1 Hz, 1 Н, CH=CHN), 14.49 (s, 1 Н, OH). 13C NMR (100 MHz, DMSO-d 6): δ = 25.1 (CH2), 25.2 (CH2), 47.8 (CH2N), 53.0 (CH2N), 90.7 (CH=CHN), 118.0 (CH), 118.5 (CH), 120.5 (C), 129.2 (C), 134.3 (CH), 151.7 (CH=CHN), 163.0 (C), 190.1 (C=O). Anal. Calcd for C13H15NO2: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.91; H, 7.05; N, 6.34.(E)-2-Methoxy-3-(morpholinomethylene)chroman-4-one (3a)Yield: 132 mg (48%); light-yellow crystals; mp 140–142 °C (MeOH). IR (ATR): 1641 (C=O), 1605, 1585, 1539, 1433, 1366, 1342, 1319, 1244, 1180, 1103, 1061, 993, 953, 924, 754, 648 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 3.33 (s, 3 H, MeO), 3.46–3.71 (m, 8 H, 4 × CH2), 6.10 (s, 1 H, H-2), 6.99 (d, J = 8.2 Hz, 1 H, H-8), 7.03 (td, J = 7.6, 0.9 Hz, 1 H, H-6), 7.40–7.45 (m, 1 H, H-7), 7.59 (s, 1 H, =CHN), 7.72 (dd, J = 7.6, 1.8 Hz, 1 H, H-5). 13C NMR (100 MHz, DMSO-d 6): δ = 51.5 (br. signal, 2 × CH2N), 54.9 (MeO), 66.5 (2 × CH2O), 99.1 (CH-2), 100.8 (C-3), 118.1 (CH-8), 122.2 (CH-6), 123.5 (C-4a), 126.5 (CH-5), 134.1 (CH-7), 150.2 (=CHN), 156.2 (C-8a), 178.0 (C=O). Anal. Calcd for C15H17NO4: C, 65.44; H, 6.22; N, 5.09. Found: C, 65.36; H, 6.17; N, 5.17.(E)-2-Morpholino-3-(morpholinomethylene)chroman-4-one (4)Yield: 442 mg (67%); yellow crystals; mp 183–184 °C (EtOH). IR (ATR): 1630 (C=O), 1601, 1582, 1530, 1510, 1462, 1435, 1325, 1304, 1296, 1244, 1219, 1152, 1111, 1015, 972, 943, 930, 901, 781, 772, 752 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 2.42 (br. s, 2 H, CH2N), 2.71–2.76 (m, 2 Н, CH2N), 3.40 (br. s, 4 Н, 2 × CH2N), 3.54–3.76 (m, 8 H, 4 × CH2O), 5.98 (s, 1 H, H-2), 6.87–6.93 (m, 2 H, H-6,8), 7.37 (ddd, J = 8.9, 7.3, 1.8 Hz, 1 H, H-7), 7.67–7.70 (m, 2 H, H-5, NCH=). 13C NMR (100 MHz, DMSO-d 6): δ = 47.3 (2 × CH2N), 52.1 (br. signal, 2 × CH2N), 66.9 (2 × CH2O), 67.0 (2 × CH2O), 91.1 (CH-2), 97.8 (C-3), 116.6 (CH), 120.9 (CH), 122.6 (C), 126.6 (CH), 134.4 (CH), 149.7 (NCH=), 159.8 (C-8a), 178.7 (C=O). Anal. Calcd for C18H22N2O4: C, 65.44; H, 6.71; N, 8.48. Found: C, 65.51; H, 6.66; N, 8.35.
    • 9a Longobardi M, Bargagna A, Mariani E, Filippelli W, Falcone G, Marabese I. Farmaco 1996; 51: 665
    • 9b Mosti L, Schenone P, Menozzi G. J. Heterocycl. Chem. 1980; 17: 61
  • 10 Coutts SJ, Wallace TW. Tetrahedron 1994; 50: 11755
  • 11 CCDC 1936674 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 12a Maurya N, Singh AK. Dyes Pigm. 2017; 147: 484
    • 12b Mayuri B, Kavitha P, Basavoju S, Bhargavi G, Reddy KL. J. Mol. Struct. 2017; 1145: 1
    • 12c al-Rashida M, Ashraf M, Hussain B, Nagra SA, Abbas G. Bioorg. Med. Chem. 2011; 19: 3367
    • 12d al-Rashida M, Batool G, Sattar A, Ejaz SA, Khan S, Lecka J, Sevigny J, Hameed A, Iqbal J. Eur. J. Med. Chem. 2016; 115: 484
    • 12e El-Shaaer HM, Abd-Elmonem WR, Ibrahim SS, Ibrahim CG. J. Heterocycl. Chem. 2014; 51: E167
    • 12f Stankovičová H, Lácová M, Gáplovský A, Chovancová J, Prónayová N. Tetrahedron 2001; 57: 3455
  • 13 Stankovicova H, Gasparova R, Lacova M, Chovancova J. Collect. Czech. Chem. Commun. 1997; 62: 781
  • 14 Synthesis of 3,3′-[(1H-Imidazol-1-yl)methylene]bis(4H-chromen-4-one) (5a)A mixture of 3-formylchromone 1 (174 mg, 1 mmol) and imidazole (68 mg, 1 mmol) was heated under reflux in MeOH (5 mL) for 35 h. The resulting solution was stored at –30 °C overnight, the precipitate formed was filtered and recrystallized from MeOH. Yield: 104 mg (28%); colorless crystals; mp 216–217 °C. IR (ATR): 1634, 1607, 1574, 1476, 1464, 1408, 1396, 1356, 1321, 1248, 1217, 1179, 1167, 1157, 1136, 1113, 1090, 1020, 957, 908, 856, 824, 773, 756, 692, 660 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 6.81 (s, 1 H, CHN), 6.93 (s, 1 H, Himidazole), 7.32 (s, 1 H, Himidazole), 7.49 (t, J = 7.6 Hz, 2 H, Ar), 7.64 (d, J = 8.5 Hz, 2 H, Ar), 7.78–7.83 (m, 3 H, Ar, H-2imidazole), 7.99 (s, 2 H, Нα-pyrone), 8.03 (d, J = 7.8 Hz, 2 H, Ar). 13C NMR (100 MHz, DMSO-d 6): δ = 49.3 (CHN), 119.1 (2 × CH), 119.9 (CHimidazole), 121.8 (2 × C), 123.7 (2 × C), 125.6 (2 × CH), 126.3 (2 × CH), 129.3 (CHimidazole), 135.1 (2 × СH), 138.2 (CHimidazole), 156.1 (2 × CHα-pyrone), 156.5 (2 × C-8a), 175.4 (2 × C=O). Anal. Calcd for C22H14N2O4: C, 71.35; H, 3.81; N, 7.56. Found: C, 71.28; H, 3.74; N, 7.44.