CC BY-ND-NC 4.0 · SynOpen 2019; 03(04): 142-147
DOI: 10.1055/s-0039-1690337
letter
Copyright with the author(s) (2019) The author(s)

Biomimetic Iodofunctionalization of Aromatic and Heteroaromatic Compounds Catalyzed by Selenium Tetrachloride

Beatriz C. O. Rocha
,
Givago P. Perecim
,
Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Diadema, SP 09972-270, Brazil   Email: raminelli@unifesp.br
› Author Affiliations
This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (São Paulo Research Foundation; FAPESP; Grant #2017/21990-0). B.C.O.R. thanks the National Council for Scientific and Technological Development (CNPq) and G.P.P. thanks the Coordination for the Improvement of Higher Education Personnel (CAPES) for their fellowships.
Further Information

Publication History

Received: 17 October 2019

Accepted after revision: 29 October 2019

Publication Date:
19 November 2019 (online)


Abstract

A biomimetic iodofunctionalization of aromatic and heteroaromatic compounds has been developed using NaI as a source of iodine and 30% H2O2 as a mild oxidant, as well as SeCl4 as a commercially available catalyst in water without a co-solvent. The method affords iodinated compounds in isolated yields of 37 to 99%. The catalytic system has potential for the bromination of aromatic substrates.

Supporting Information

 
  • References and Notes

    • 1a Biffis A, Centomo P, Zotto AD, Zecca M. Chem. Rev. 2018; 118: 2249
    • 1b Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
    • 1c Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
    • 1d Maluenda I, Navarro O. Molecules 2015; 20: 7528
    • 1e Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 2a Capriati V, Perna FM, Salomone A. Dalton Trans. 2014; 14204
    • 2b Zhong Z, Wang Z.-Y, Ni S.-F, Dang L, Lee HK, Peng X.-S, Wong HN. C. Org. Lett. 2019; 21: 700
    • 2c Boultwood T, Bull JA. Org. Lett. 2014; 16: 2740
    • 3a Ziegler DS, Wei B, Knochel P. Chem. Eur. J. 2019; 25: 2695
    • 3b Bao RL.-Y, Zhao R, Shi L. Chem. Commun. 2015; 51: 6884
    • 3c Barl NM, Werner V, Sämann C, Knochel P. Heterocycles 2014; 88: 827
    • 4a Spindler B, Kataeva O, Knölker H.-J. J. Org. Chem. 2018; 83: 15136
    • 4b Zhang Y, Banwell MG. J. Org. Chem. 2017; 82: 9328
    • 4c Williams S, Jin J, Kan SB. J, Li M, Gibson LJ, Paterson I. Angew. Chem. Int. Ed. 2017; 56: 645
    • 4d Nguyen MH, Imanishi M, Kurogi T, Smith AB. III. J. Am. Chem. Soc. 2016; 138: 3675
    • 4e Zhang Z, Xie H, Li H, Gao L, Song Z. Org. Lett. 2015; 17: 4706
    • 5a Jagadesan P, Schanze KS. Macromolecules 2019; 52: 3845
    • 5b Rodrigues RR, Raminelli C, Péres LO. Eur. Polym. J. 2018; 106: 202
    • 5c Traina CA, Bakus RC. II, Bazan GC. J. Am. Chem. Soc. 2011; 133: 12600
    • 5d Jahnke AA, Howe GW, Seferos DS. Angew. Chem. Int. Ed. 2010; 49: 10140
    • 6a Mondal S, Raja K, Schweizer U, Mugesh G. Angew. Chem. Int. Ed. 2016; 55: 7606
    • 6b Lavoie S, Brumley D, Alexander TS, Jasmin C, Carranza FA, Nelson K, Quave CL, Kubanek J. J. Org. Chem. 2017; 82: 4160
    • 6c Silva EJ. G, Bezerra-Souza A, Passero LF. D, Laurenti MD, Ferreira GM, Fujii DG. V, Trossini GH. G, Raminelli C. Future Med. Chem. 2018; 10: 2069
    • 7a Kortylewicz ZP, Kimura Y, Inoue K, Mack E, Baranowska-Kortylewicz J. J. Med. Chem. 2012; 55: 2649
    • 7b Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J. ACS Appl. Mater. Interfaces 2015; 7: 19798
    • 7c Wang C, Jin Q, Yang S, Zhang D, Wang Q, Li J, Song S, Sun Z, Ni Y, Zhang J, Yin Z. Mol. Pharmaceutics 2016; 13: 180
    • 8a Lusic H, Grinstaff MW. Chem. Rev. 2013; 113: 1641
    • 8b Lee N, Choi SH, Hyeon T. Adv. Mater. 2013; 25: 2641
    • 8c Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, Fournel S, Klymchenko AS, Mély Y, Vandamme TF. ACS Nano 2014; 8: 10537
    • 8d Ding Y, Zhang X, Xu Y, Cheng T, Ou H, Li Z, An Y, Shen W, Liu Y, Shi L. Polym. Chem. 2018; 9: 2926
    • 8e Gaikwad HK, Tsvirkun D, Ben-Nun Y, Merquiol E, Popovtzer R, Blum G. Nano Lett. 2018; 18: 1582
  • 9 Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GW. III, Lu Z, Jonsson M, Kloo L. Angew. Chem. Int. Ed. 2011; 50: 11598
    • 10a Leas DA, Dong Y, Vennerstrom JL, Stack DE. Org. Lett. 2017; 19: 2518
    • 10b Hofmann D, Hofmann J, Hofmann L.-E, Hofmann L, Heinrich MR. Org. Process Res. Dev. 2015; 19: 2075
    • 10c Trusova ME, Krasnokutskaya EA, Postnikov PS, Choi Y, Chi K.-W, Filimonov VD. Synthesis 2011; 2154
    • 10d Zarchi MA. K, Ebrahimi N. J. Appl. Polym. Sci. 2011; 121: 2621
    • 11a Iida K, Ishida S, Watanabe T, Arai T. J. Org. Chem. 2019; 84: 7411
    • 11b Tang R.-J, Milcent T, Crousse B. J. Org. Chem. 2018; 83: 930
    • 11c Racys DT, Sharif SA. I, Pimlott SL, Sutherland A. J. Org. Chem. 2016; 81: 772
    • 11d Leboeuf D, Ciesielski J, Frontier AJ. Synlett 2014; 25: 399
    • 11e Gallo RD. C, Ferreira IM, Casagrande GA, Pizzuti L, Oliveira-Silva D, Raminelli C. Tetrahedron Lett. 2012; 53: 5372
    • 11f Gallo RD. C, Gebara KS, Muzzi RM, Raminelli C. J. Braz. Chem. Soc. 2010; 21: 770
    • 11g Jereb M, Zupan M, Stavber S. Chem. Commun. 2004; 2614
    • 11h Filimonov VD, Semenischeva NI, Krasnokutskaya EA, Hwang HY, Chi K.-W. Synthesis 2008; 401
    • 11i Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul R, Olah GA. J. Am. Chem. Soc. 2004; 126: 15770
    • 11j Lulinski P, Kryska A, Sosnowski M, Skulski L. Synthesis 2004; 441
    • 11k Barluenga J. Pure Appl. Chem. 1999; 71: 431
    • 12a Alberto EE, Muller LM, Detty MR. Organometallics 2014; 33: 5571
    • 12b Abe M, You Y, Detty MR. Organometallics 2002; 21: 4546
    • 12c Francavilla C, Drake MD, Bright FV, Detty MR. J. Am. Chem. Soc. 2001; 123: 57
    • 12d Higgs DE, Nelen MI, Detty MR. Org. Lett. 2001; 3: 349
    • 12e Detty MR, Zhou F, Friedman AE. J. Am. Chem. Soc. 1996; 118: 313
    • 12f Alberto EE, Braga AL, Detty MR. Tetrahedron 2012; 68: 10476
    • 12g Bennett SM, Tang Y, McMaster D, Bright FV, Detty MR. J. Org. Chem. 2008; 73: 6849
    • 12h Goodman MA, Detty MR. Organometallics 2004; 23: 3016
    • 12i Drake MD, Bright FV, Detty MR. J. Am. Chem. Soc. 2003; 125: 12558
    • 12j Drake MD, Bateman MA, Detty MR. Organometallics 2003; 22: 4158
  • 13 Bhuyan BJ, Mugesh G. Inorg. Chem. 2008; 47: 6569

    • Selected examples of deiodination reactions catalyzed by selenium compounds:
    • 14a Mondal S, Mugesh G. Chem. Eur. J. 2019; 25: 1773
    • 14b Mondal S, Mugesh G. Org. Biomol. Chem. 2016; 14: 9490
    • 14c Mondal S, Manna D, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 9298
    • 14d Raja K, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 7674
  • 15 Preparation of Iodinated Compounds 2a–n and 3; General Procedure: To a solution of compound 1ao (2 mmol in 2.5 mL of H2O) under stirring at 50 °C was added a solution of SeCl4 (20 mol% in 5 mL of H2O). Then, 2 M aqueous solutions of NaI (5 or 2.5 mmol) and of H2O2 (10 or 5 mmol) were added alternately in small aliquots (every 5 min over a period of 50 min) and the mixture was maintained under stirring at 50 °C for 24 h. A saturated aqueous solution of Na2S2O3 (10 mL) was then added to the reaction, the mixture was extracted with ethyl acetate (3 × 20 mL) and the organic phase was dried over MgSO4. After filtration, the solvent was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using an appropriate eluent, to afford the desired product 2an and 3.1-(4-Hydroxy-3,5-diiodophenyl)ethenone (2a): Yield: 483 mg (62%); off-white solid; R f = 0.55 (CH2Cl2); mp 173 °C [lit.17 173 °C]. 1H NMR (300 MHz, DMSO-d 6 ): δ = 8.26 (s, 2 H), 3.38 (s, 1 H), 2.51 (s, 3 H). 13C NMR (75 MHz, DMSO-d 6 ): δ = 194.7, 159.8, 139.7, 132.8, 86.4, 26.6. IR (KBr): 3173, 1665, 1460, 1393, 1233 cm–1. MS (EI): m/z (%) = 387.7 (71.7), 372.7 (100.0), 217.8 (18.2), 91.0 (25.6), 43.0 (59.3).
  • 16 Vogel AI. In Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed. Longman Scientific & Technical; Harlow: 1989
  • 17 Baker W, Sansbury H, Simmonds WH. C. J. Soc. Chem. Ind. (London) 1943; 62: 193