CC BY-ND-NC 4.0 · SynOpen 2019; 03(03): 71-76
DOI: 10.1055/s-0039-1690328
letter
Copyright with the author

Cyclization of Activated Methylene Isocyanides with Methyl N(N),N′-Di(tri)substituted Carbamimidothioate: A Novel Entry for the Synthesis of N,1-Aryl-4-tosyl/ethoxycarbonyl-1H-imidazol-5-amines

Dukanya Dukanya
a   Department of Studies in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India, swarooptr@gmail.com   Email: salundibasappa@gmail.com
,
Toreshettahally R. Swaroop
a   Department of Studies in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India, swarooptr@gmail.com   Email: salundibasappa@gmail.com
,
Shobith Rangappa
c   Adichunchangiri Institute for Molecular Medicine, Nagamangala 571448, Karnataka, India
,
Kanchugarakoppal S. Rangappa
b   Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India   Email: rangappaks@gmail.com
,
Basappa Basappa
a   Department of Studies in Organic Chemistry, University of Mysore, Manasagangothri, Mysuru 570 006, Karnataka, India, swarooptr@gmail.com   Email: salundibasappa@gmail.com
› Author Affiliations
This research was supported by University Grants Commission (UGC) and Israel Science Foundation (ISF) (ISF-UGC; F.NO. 6-6/2016(IC)); Council of Scientific and Industrial Research (CSIR; No. 02(0291)/ 17/EMR-II), Department of Biotechnology, Ministry of Science and Technology (DBT; No. BT/PR/8064/BID/7/441/2013), and the Vision Group on Science and Technology (VGST/CESEM-637/2018).
Further Information

Publication History

Received: 27 June 2019

Accepted after revision: 29 July 2019

Publication Date:
19 August 2019 (online)


Abstract

Base-induced cyclization of active methylene isocyanides with carbamimidothioates for the synthesis of N,1-aryl-4-tosyl/ethylcarboxy-1H-imidazol-5-amines is reported. The diversity of the reactions is exemplified by using various carbamimidothioates obtained from symmetrical N,N-disubstituted, unsymmetrical N,N,N-trisubstituted, and unsymmetrical N,N-disubstituted thioureas. This diversity is further enriched by different isocyanides. A mechanism for the formation of the title compounds is proposed.

Supporting Information

 
  • References and Notes

    • 1a Shingalapur RV, Hosamani KM, Keri RS. Eur. J. Med. Chem. 2009; 44: 4244
    • 1b Sharma D, Narasimhan B, Kumar P, Judge V, Narang R, De Clercq E, Balzarini J. Eur. J. Med. Chem. 2009; 44: 2347
    • 1c Zampieri D, Mamolo MG, Vio L, Banfi E, Scialino G, Fermeglia M, Ferrone M, Pricl S. Bioorg. Med. Chem. 2007; 15: 7444
    • 2a Gupta P, Hameed S, Jain R. Eur. J. Med. Chem. 2004; 39: 805
    • 2b Jyoti P, Vinod TK, Shyam VS, Vinita C, Bhatnagar S, Sinha S, Gaikwad AN, Tripathi RP. Eur. J. Med. Chem. 2009; 44: 3350
  • 3 Hadizadeh F, Hosseinzadeh H, Motamed-Shariaty VS, Seifi M, Kazemi S. Iran. J. Pharm. Res. 2008; 7: 29
    • 4a Özkay Y, Isikdag I, Incesu Z, Akalın GE. Eur. J. Med. Chem. 2010; 45: 3320
    • 4b Refaat HM. Eur. J. Med. Chem. 2010; 45: 2949
    • 4c Congiu C, Cocco MT, Onnis V. Bioorg. Med. Chem. Lett. 2008; 18: 989
    • 4d Yang F, Nickols NG, Li BC, Marinov GK, Said JW, Dervan PB. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 1863
  • 5 Tonelli M, Simone M, Tasso B, Novelli F, Boido V. Bioorg. Med. Chem. 2010; 18: 2937
  • 6 Bhandari K, Srinivas N, Marrapu VK, Verma A, Srivastava S, Gupta S. Bioorg. Med. Chem. Lett. 2010; 20: 291
    • 7a Puratchikodya A, Doble M. Bioorg. Med. Chem. 2007; 15: 1083
    • 7b Achar KC. S, Hosamani KM, Seetharamareddy HR. Eur. J. Med. Chem. 2010; 45: 2048
    • 8a Laufer SA, Hauser DR. J, Domeyer DM, Kinkel K, Liedtke AJ. J. Med. Chem. 2008; 51: 4122
    • 8b Young PR, McLaughlin MM, Kumari S, Kassisi S, Doyle ML, McNulty D, Gallagher TF, Fisher S, McDonnell PC, Carr SA, Huddleston MJ, Seibel G, Porter TG, Livi GP, Adams JP, Lee JC. J. Biol. Chem. 1997; 272: 12116
  • 9 Sun B, Liu K, Han J, Zhao L.-Y, Su X, Lin B, Zhao DM, Cheng MS. Bioorg. Med. Chem. 2015; 23: 6763
  • 10 Gînther M, Juchum M, Kelter G, Fiebig H, Laufer S. Angew. Chem. Int. Ed. 2016; 55: 10890
  • 11 Kinobe RT, Vlahakis JZ, Vreman HJ, Stevenson DK, Brien JF, Szarek WA, Nakatsu K. Br. J. Pharmacol. 2006; 147: 307
  • 12 Roumen L, Peeters JW, Emmen JM. A, Beugels IP. E, Custers EM. G, de Gooyer M, Plate R, Pieterse K, Hilbers PA. J, Smits JF. M, Vekemans JA. J, Leysen D, Ottenheijm HC. J, Janssen HM, Hermans JJ. R. J. Med. Chem. 2010; 53: 1712
  • 13 Bressi JC, Jong R, Wu Y, Jennings AJ, Brown JW, O’Conwell S, Tari LW, Skene RJ, Vu P, Narve M, Cao X, Gangloff AR. Bioorg. Med. Chem. Lett. 2010; 20: 3138
  • 14 Hu Q, Negri M, Jahn-Hoffmann K, Zhuang Y, Olgen S, Bartels M, Muller-Vieira U, Lauterbach T, Hartman RW. Bioorg. Med. Chem. 2008; 16: 7715
  • 15 Zhan P, Liu X, Zhu J, Fang Z, Li Z, Pannecouque C, De Clercq E. Bioorg. Med. Chem. 2009; 17: 5775
    • 16a Breslin HJ, Cai C, Miskowski TA, Coutinho SV, Zhang S.-P, Hornby P, He W. Bioorg. Med. Chem. Lett. 2006; 16: 2505
  • 17 Munk SA, Harcourt DA, Arasasingham PN, Burke JA, Kharlamb AB, Manlapaz CA, Padillo EU, Roberts D, Runde E, Williams L, Wheeler LA, Garst ME. J. Med. Chem. 1997; 40: 18
  • 18 Galley G, Stalder H, Goergler A, Hoener MC, Norcross RD. Bioorg. Med. Chem. Lett. 2012; 22: 5244
  • 19 Madsen C, Jensen AA, Liljefors T, Kristiansen U, Nielsen B, Hansen CP, Larsen M, Ebert B, Bang-Andersen B, Krogsgaard-Larsen P, Frølund B. J. Med. Chem. 2007; 50: 4147
  • 20 Yanagisawa H, Amemiya Y, Kanazaki T, Shimoji Y, Fujimoto Y, Kitahara Y, Sada T, Mizuno M, Ikeda M, Miyamoto S, Furukawa Y, Koike H. J. Med. Chem. 1996; 39: 323
  • 21 Calderara S, Xiang Y, Moss B. Virology 2001; 279: 22
  • 22 Ganellin CR, Leurquin F, Piripitsi A, Arrang J.-M, Garbarg M, Ligneau X, Schunack W, Schwartz J.-C. Arch. Pharm. 1998; 331: 395
  • 23 Chan GW, Mong S, Hemling ME, Freyer AJ, Offen PH, DeBrosse CW, Sarau HM, Westley JW. J. Nat. Prod. 1993; 56: 116
    • 24a Lunt E, Newton CG, Smith C, Stevens GP, Stevens MF, Straw CG, Walsh RJ, Warren PJ, Fizames C, Lavelle F. J. Med. Chem. 1987; 30: 357
    • 24b Hoffman K. Imidazoles and Its Derivatives . Interscience; New York: 1953: 143-145
    • 24c Bredereck H, Gompper R, Hayer D. Chem. Ber. 1959; 92: 338
    • 24d Five-Membered Heterocycles Containing Two Heteroatoms and Their Benzo Derivatives. In Heterocyclic Compounds, Vol. 5. Elderfield RC. Wiley; New York: 1957. 744
  • 25 Pardeshi SD, Sathe PA, Vadagaonkar KS, Melone L, Chaskar AC. Synthesis 2018; 50: 361
  • 26 Tang D, Wu P, Liu X, Chen Y.-X, Guo S.-B, Chen W.-L, Li J.-G, Chen B.-H. J. Org. Chem. 2013; 78: 2746
  • 27 Horneff T, Chuprakov S, Chernyak N, Gevorgyan V, Fokin VV. J. Am. Chem. Soc. 2008; 130: 14972
  • 28 Li J, Neuville L. Org. Lett. 2013; 15: 1752
  • 29 Zhu Y, Li C, Zhang J, She M, Sun W, Wan K, Wang Y, Yin B, Liu P, Li J. Org. Lett. 2015; 17: 3872
  • 30 Rajaguru K, Suresh R, Mariappan A, Muthusubramanian S, Bhuvanesh N. Org. Lett. 2014; 16: 744
  • 31 Guo X, Chen W, Chen B, Huang W, Qi W, Zhang G, Yu Y. Org. Lett. 2015; 17: 1157
  • 32 Wang Y, Shen H, Xie Z. Synlett 2011; 969
  • 33 Xiong J, Wei X, Liu Z.-M, Ding M.-W. J. Org. Chem. 2017; 82: 13735
    • 34a Zeng Z, Jin H, Xie J, Tian B, Rudolph M, Rominger F, Hashmi AS. K. Org. Lett. 2017; 19: 1020
    • 34b Xu W, Wang G, Sun N, Liu Y. Org. Lett. 2017; 19: 3307
  • 35 Guchhait SK, Hura N, Shah AP. J. Org. Chem. 2017; 82: 2745
  • 36 Hao W, Jiang Y, Cai M. J. Org. Chem. 2014; 79: 3634
    • 37a Bunel AS, Vasiliex MA, Statsyuk VE, Ostapenko GI, Peregudov AS. J. Fluorine Chem. 2014; 163: 34
    • 37b van Leusen AM, Oldenziel OH. Tetrahedron Lett. 1972; 13: 2373
    • 37c Huang WS, Yuan CY, Wang ZQ. J. Fluorine Chem. 1995; 74: 279
    • 38a Eger WA, Gronge RL, Schill H, Goumont R, Clark T, Williams CM. Eur. J. Org. Chem. 2001; 2549
    • 38b Kanazawa C, Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2006; 128: 10662
    • 39a van Leusen AM, Schaart FJ, van Leusen D. Recl. Trav. Chim. Pays-Bas 1979; 98: 258
    • 39b Nunami C, Yamada M, Fukui T, Matsumoto K. J. Org. Chem. 1994; 59: 7635
    • 39c Yamada M, Fukui T, Nunami K. Synthesis 1995; 1365
  • 40 van Nispen SP. J. M, Mensink C, van Leusen AM. Tetrahedron Lett. 1980; 21: 3723
  • 41 Kreutzberger A, Kolter K. Chem.-Ztg. 1986; 110: 256
  • 42 Taylor EC, Laattina JL, Tseng CP. J. Org. Chem. 1982; 47: 2043
    • 43a van Leusen AM, Wildemam J, Oldenziel OH. J. Org. Chem. 1977; 42: 1153
    • 43b Possel O, van Leusen AM. Heterocycles 1997; 7: 77
    • 43c Shih NY. Tetrahedron Lett. 1993; 34: 595
    • 43d Kuwano E, Hisano T, Eto M, Suguki K, Unnithan GC, Bowers WS. Pestic. Sci. 1992; 34: 263
    • 43e Yamada N, Kuwano E, Eto M. Z. Naturforsch., C: J. Biosci. 1993; 48: 301
    • 43f Moskal J, van Stralen P, Postma D, van Leusen AM. Tetrahedron Lett. 1986; 27: 2173
    • 43g Bon RS, Hong C, Bouma MJ, Schmitz RF, de Kanter FJ. J, Lutz M, Spek AL, Orru RV. A. Org. Lett. 2003; 5: 3759
    • 43h Bon RS, van Vliet B, Sprenkels NE, Schmitz RF, de Kanter FJ. J, Stevens CV, Swart M, Bickelhaupt FM, Groen MB, Orru RV. A. J. Org. Chem. 2005; 70: 3542
    • 43i Elders N, Schmitz RF, de Kanter FJ. J, Ruijter E, Groen MB, Orru RV. A. J. Org. Chem. 2007; 72: 6135
    • 44a Murahashi SI, Naota T, Taki H, Mizuno M, Takaya H, Komiya S, Mizuno Y, Oyasto N, Hiruoka M, Hirano M, Eukuoka A. J. Am. Chem. Soc. 1995; 117: 12436
    • 44b Aydin J, Kumar KS, Eriksson L, Szabo KJ. Adv. Synth. Catal. 2007; 349: 2585
  • 45 Murakami T, Otsuka M, Ohno M. Tetrahedron Lett. 1982; 23: 4729
  • 46 Bonin MA, Giguere D, Roy R. Tetrahedron 2007; 63: 4912
  • 47 Suzuki M, Moriya T, Matsumoto K, Miyoshi M. Synthesis 1982; 874
  • 48 Bossio R, Marcaccini S, Pepino R, Polo C, Valle G. Synthesis 1989; 641
  • 49 Helal CJ, Lucas JC. Org. Lett. 2002; 4: 4133
  • 50 Elders N, van der Born D, Hendrickx LJ. D, Timmer BJ. J, Krause A, Jassen E, de Kanter FJ. J, Ruijter E, Orru RV. A. Angew. Chem. Int. Ed. 2009; 48: 5856
    • 51a Lingaraju GS, Swaroop TR, Vinayaka AC, Sharath Kumar KS, Sadashiva MP, Rangappa KS. Synthesis 2012; 44: 1373
    • 51b Swaroop TR, Roopashree R, Ila H, Rangappa KS. Tetrahedron Lett. 2013; 54: 147
    • 51c Swaroop TR, Ila H, Rangappa KS. Tetrahedron Lett. 2013; 54: 5288
    • 51d Raghava B, Parameshwarappa B, Acharya A, Swaroop TR, Rangappa KS, Ila H. Eur. J. Org. Chem. 2014; 1892
    • 51e Vinayaka AC, Swaroop TR, Chikkade PK, Rangappa KS, Sadashiva MP. RSC Adv. 2016; 6: 11528
    • 51f Rajeev N, Swaroop TR, Anil SM, Bommegowda YK, Rangappa KS, Sadashiva MP. Synlett 2017; 28: 2281
  • 52 Rajeev N, Swaroop TR, Anil SM, Kiran KR, Rangappa KS, Sadashiva MP. J. Chem. Sci. 2018; 130: 150
  • 53 Vinay Kumar KS, Swaroop TR, Rajeev N, Vinayaka AC, Lingaraju GS, Rangappa KS, Sadashiva MP. Synlett 2016; 27: 1363
  • 54 Synthesis of Substituted Thioureas 3; General Procedure: A mixture of arylisothiocyanate 1 (10 mmol), amine 2 (10 mmol) and triethylamine (0.1 mmol) in dichloromethane (10 mL) was stirred for 1–2 h. The progress of the reaction was monitored by TLC and, after completion, the dichloromethane was removed under reduced pressure. The residue was treated with conc. HCl (1 mL) in water (50 mL) and filtered. The precipitate was washed with water, drained, and dried at room temperature.1,3-Diphenylthiourea (3a): Yield: 89%; white solid; mp 150–153 °C. 1H NMR (DMSO-d 6, 400 MHz): δ = 8.19 (s, 2 H, NH), 7.35–7.41 (m, 8 H, Ar-H), 7.24–7.28 (m, 2 H, Ar-H). 13C NMR (DMSO-d 6, 100 MHz): δ = 179.6, 137.1, 129.6, 127.1, 125.3. HRMS (ESI-TOF): m/z [M + H]+ calcd for C13H13N2S: 229.0799; found: 229.0790.
  • 55 Synthesis of Carbamimidothioates 4; General Procedure: To a solution of substituted thiourea 3 (8 mmol) in benzene (20 mL) and 20% NaOH (20 mL), tetra-n-butylammonium bromide (0.8 mmol) and MeI (8 mmol) were added. The progress of the reaction was monitored by TLC and, after the completion of the reaction, the organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with water (25 mL), brine (25 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain the crude product, which was purified by column chromatography over silica gel, eluting with hexane/ethyl acetate (8:2).Methyl N,N′-Diphenylcarbamimidothioate (4a): Yield: 95%; white solid; mp 95–100 °C. 1H NMR (CDCl3, 400 MHz): δ = 7.08–7.33 (m, 10 H, Ar-H), 6.34 (s, 1 H, NH), 2.30 (s, 3 H, SCH3). 13C NMR (CDCl3, 100 MHz): δ = 150.0, 131.6, 129.0, 123.1, 134.0, 131.4, 123.5, 121.6, 121.1, 14.5. HRMS (ESI-TOF): m/z [M + H]+ calcd for C14H15N2S: 243.0955; found: 243.0950.
  • 56 Synthesis of Imidazole 6; General Procedure: To a solution of sodium hydride (6 mmol) in DMF (3 mL), substituted carbamimidothioate 4 (3 mmol) and tosylmethyl isocyanide/ethyl isocyanoacetate 5 (3 mmol) were added at 0 °C. The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. After completion of the reaction, water (25 mL) was added and the mixture was extracted with ethyl acetate (3 × 25 mL), the combined organic phases were washed with brine (25 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give the crude product, which was purified by column chromatography over silica gel, eluting with hexane/ethyl acetate (8:2). N,1-Diphenyl-4-tosyl-1H-imidazol-5-amine (6a): Yield: 77%; brown solid; mp 204–209 °C. 1H NMR (CDCl3, 400 MHz): δ = 7.79 (d, J = 8.0 Hz, 2 H, Ar-H), 7.49 (s, 1 H, Ar-H), 7.25–7.28 (m, 2 H, Ar-H), 7.20–7.25 (m, 4 H, Ar-H), 6.97–7.00 (m, 2 H, Ar-H), 6.89 (s, 1 H, Ar-H), 6.78–6.80 (m, 2 H, Ar-H), 6.60 (d, J = 8.0 Hz, 2 H, Ar-H), 2.36 (s, 3 H, CH3). 13C NMR (CDCl3, 100 MHz): δ = 143.9, 142.1, 138.6, 136.2, 134.7, 129.6, 129.4, 128.9, 128.7, 128.1, 127.5, 126.1, 124.2, 122.1, 117.7, 29.6. HRMS (ESI-TOF): m/z [M + H]+ calcd for C22H20N3O2S: 390.1276; found: 390.1274.