Synthesis 2020; 52(04): 544-552
DOI: 10.1055/s-0039-1690244
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Aerobic Oxidative Alkynylation of 3,4-Dihydroquinoxalin-2-ones

Jaume Rostoll-Berenguer
,
Gonzalo Blay
,
José R. Pedro
,
Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain   Email: jose.r.pedro@uv.es   Email: carlos.vila@uv.es
› Author Affiliations
Financial support from the Agencia Estatal de Investigación (AEI, Spanish Government) and the European Regional Development Fund (FEDER, European Union) (CTQ2017-84900-P) is acknowledged. J.R.-B. thanks the Ministerio de Ciencia, Innovación y Universidades for a FPU predoctoral contract and C.V. thanks the Agencia Estatal de Investigación (AEI, Spanish Government) for RyC contract (RYC-2016-20187).
Further Information

Publication History

Received: 18 September 2019

Accepted after revision: 16 October 2019

Publication Date:
04 November 2019 (online)


Published as part of the Bürgenstock Special Section 2019 Future Stars in Organic Chemistry

Abstract

Herein, we described a ligand-free copper-catalyzed aerobic oxidative functionalization of 3,4-dihydroquinoxalin-2(1H)-ones with terminal alkynes using visible-light and oxygen as terminal oxidant to give 3-ethynyl-3,4-dihydroquinoxalin-2(1H)-one, cyclic propargylic amines, in moderate to good yields. Moreover, we demonstrate the versatility of the 3-ethynyl-3,4-dihydroquinoxalin-2(1H)-ones obtained by preparing several 3,4-dihydroquinoxalin-2-one derivatives.

Supporting Information

 
  • References

    • 1a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 1c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1d Zhang S.-Y, Zhang F.-M, Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
    • 1e Girard CR, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 1f Yang L, Huang H.-M. Chem. Rev. 2015; 115: 3468
    • 2a Li C.-J, Li Z.-P. Pure Appl. Chem. 2006; 78: 935
    • 2b Li Z.-P, Bohle D.-S, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
    • 2c Beatty JW, Stephenson CR. Acc. Chem. Res. 2015; 48: 1474
  • 3 Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev. 2017; 117: 14091
    • 4a Yu PH, Davis BA, Boulton AA. J. Med. Chem. 1992; 35: 3705
    • 4b Loescher W, Jaeckel R, Mueller FJ. Pharmacology 1989; 163: 1
    • 4c Kihara K, Aoki T, Moriguchi A, Yamamoto H, Maeda M, Tojo N, Yamanaka T, Ohkubo M, Matsuoka N, Seki J, Mutoh S. Drug Dev. Res. 2004; 61: 233
    • 4d Merlin G, Nurit F, Ravanel P, Bastide J, Coste C, Tissut M. Phytochemistry 1987; 26: 1567
    • 4e Swithenbank C, McNulty PJ, Viste KL. J. Agric. Food Chem. 1971; 417
    • 4f Fleming JJ, Du Bois J. J. Am. Chem. Soc. 2006; 128: 3926
    • 4g Yoon T, Shair MD, Danishefsky SJ, Shulte GK. J. Org. Chem. 1994; 59: 3752
    • 4h Trost BM, Chung CK, Pinkerton A. Angew. Chem. Int. Ed. 2004; 43: 4327
    • 5a Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
    • 5b Niu M, Yin Z, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2008; 73: 3961
    • 5c Xu Z, Yu X, Feng X, Bao M. J. Org. Chem. 2011; 76: 6901
    • 5d Alonso F, Arroyo A, Martín-García I, Moglie Y. Adv. Synth. Catal. 2015; 357: 3549
    • 5e Teong SP, Yu D, Sum YN, Zhang Y. Green Chem. 2016; 18: 3499
    • 5f Xu X, Li X. Org. Lett. 2009; 11: 1027
    • 5g Xu X, Ge Z, Cheng D, Li X. ARKIVOC 2012; (viii): 107
    • 6a Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
    • 6b Li Z, MacLeod PD, Li C.-J. Tetrahedron: Asymmetry 2006; 17: 590
    • 6c Rueping M, Koenigs RM, Poscharny K, Fabry DC, Leonori D, Vila C. Chem. Eur. J. 2012; 18: 5170
    • 6d Perepichka I, Kundu S, Hearne Z, Li C.-J. Org. Biomol. Chem. 2015; 13: 447
    • 6e Kumar G, Verna S, Ansari A, Khan NH, Kureshy RI. Catal. Commun. 2017; 99: 94
    • 7a Tanimori S, Nishimura T, Kirihata M. Bioorg. Med. Chem. Lett. 2009; 19: 4119
    • 7b Shi L, Zhou H, Wu J, Li X. Mini-Rev. Org. Chem. 2015; 12: 96
    • 7c Kristoffersen T, Hansen JH. Chem. Heterocycl. Compd. 2017; 53: 310
    • 8a Arasteh K, Wood R, Müller M, Prince W, Cass L, Moore K, Dallow N, Jones A, Klein A, Burt V, Kleem J.-P. HIV Clin. Trials 2001; 2: 307
    • 8b Patel M, McHugh RJ, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Rodgers JD. Bioorg. Med. Chem. Lett. 2000; 10: 1729
  • 9 Rosenzweig-Lipson S, Zhang J, Mazandarani H, Harrison BL, Sabb A, Sabalski J, Stack G, Welmaker G, Barret JE, Dunlop J. Brain Res. 2006; 1073–1074: 240
  • 10 Abu Shuheil MY, Hassuneh MR, Al-Hiari YM, Qaisi AM, El-Abadelah MM. Heterocycles 2007; 71: 2155
  • 11 Tang AH, Franklin SR, Himes CS, Ho PM. J. Pharmacol. Exp. Ther. 1991; 259: 248
    • 12a Ding W, Lu L.-Q, Liu J, Liu D, Song H.-T, Xiao W.-J. J. Org. Chem. 2016; 81: 7237
    • 12b Akula PS, Hong B.-C, Lee G.-H. RSC Adv. 2018; 8: 19580
    • 13a Blay G, Cardona L, Climent E, Pedro JR. Angew. Chem. Int. Ed. 2008; 47: 5593
    • 13b Blay G, Brines A, Monleón A, Pedro JR. Chem. Eur. J. 2012; 18: 2440
    • 13c De Munck L, Monleón A, Vila C, Muñoz MC, Pedro JR. Org. Biomol. Chem. 2015; 13: 7393
    • 13d De Munck L, Monleón A, Vila C, Pedro JR. Adv. Synth. Catal. 2017; 359: 1582
    • 14a Rostoll-Berenguer J, Blay G, Pedro JR, Vila C. Catalysts 2018; 8: 653
    • 14b Rostoll-Berenguer J, Blay G, Muñoz MC, Pedro JR, Vila C. Org. Lett. 2019; 21: 6011
    • 15a Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713
    • 15b Reiser O. Acc. Chem. Res. 2016; 49: 1190
    • 15c Paria S, Reiser O. ChemCatChem 2014; 6: 2477
  • 16 Hassan M, Li W.-S. Tetrahedron 2015; 71: 2719
  • 17 We do not know which is the copper complex involved in the reaction as we did not add an external ligand. As a referee suggest a dimeric copper complex (Cu(O2)Cu) could be involved in the oxygen radical chemistry. Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Chem. Rev. 2017; 117: 2059
  • 18 See supporting information for further details.
  • 19 Qiao JX, Wang TC, Ruel R, Thibeault C, L’Heureux A, Schumacher WA, Spronk SA, Hiebert S, Bouthillier G, Lloyd J, Pi Z, Schnur DM, Abell LM, Hua J, Price LA, Liu E, Wu Q, Steinbacher TE, Bostwick JS, Chang M, Zheng J, Gao Q, Ma B, McDonnell PA, Huang CS, Rehfuss R, Wexler RR, Lam PY. S. J. Med. Chem. 2013; 56: 9275
  • 20 Although we observed in all reactions full conversion of quinoxalin-2-ones 1, the corresponding alkynylated product 3 was accompanied with other byproducts: the oxidation of 1 to the corresponding hemiaminal and the corresponding 1,4-dihydroquinoxaline-2,3-dione.