Synthesis 2020; 52(04): 521-528
DOI: 10.1055/s-0039-1690209
paper
© Georg Thieme Verlag Stuttgart · New York

π-Hole Interactions with Various Nitro Compounds Relevant for Medicine: DFT Calculations and Surveys of the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB)

Jari M. Hoffmann
,
Akshay K. Sadhoe
,
van’t Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands   eMail: t.j.mooibroek@uva.nl
› Institutsangaben
T.J.M. conducted the work with funds from the research program ‘VIDI­’ with project number 723.015.006, which is financed by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organization for Scientific Research, NWO).
Weitere Informationen

Publikationsverlauf

Received: 22. August 2019

Accepted after revision: 16. September 2019

Publikationsdatum:
09. Oktober 2019 (online)


Published as part of the Bürgenstock Special Section 2019 Future Stars in Organic Chemistry

Abstract

Model DFT computations and a thorough evaluation of the Cambridge structural database (CSD) and the protein data bank (PDB) were conducted to assess the occurrence and significance of intermolecular π-hole interactions with various nitro compounds relevant to medicine. DFT calculations indicate interaction energies between –3.9 to –6.5 kcal·mol–1, which is in the order of typical hydrogen- and halogen­-bonding interactions. Ample structural evidence for the occurrence of nitro π-hole interactions was found within the CSD and the PDB.

Supporting Information

 
  • References and Notes

  • 1 Lehn JM. Supramolecular Chemistry: Concepts and Perspectives, 1st ed. Wiley-VCH; Weinheim: 1995
  • 2 Grabowski SJ. Hydrogen Bonding: New Insights . Springer; Heidelberg: 2006
    • 3a Scholfield MR, van der Zanden CM, Carter M, Ho PS. Protein Sci. 2013; 22: 139
    • 3b Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
    • 3c Auffinger P, Hays FA, Westhof E, Ho PS. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 16789
    • 4a Ho PS. Future Med. Chem. 2017; 9: 637
    • 4b Mendez L, Henriquez G, Sirimulla S, Narayan M. Molecules 2017; 22: 1397
    • 4c Voth AR, Hays FA, Ho PS. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 6188
    • 4d Danelius E, Andersson H, Jarvoll P, Lood K, Grafenstein J, Erdelyi M. Biochemistry 2017; 56: 3265
    • 5a Bauza A, Mooibroek TJ, Frontera A. Angew. Chem. Int. Ed. 2013; 52: 12317
    • 5b Bauza A, Mooibroek TJ, Frontera A. Chem. Rec. 2016; 16: 473
    • 5c Bauza A, Frontera A, Mooibroek TJ. Phys. Chem. Chem. Phys. 2016; 18: 1693
    • 5d Bauza A, Mooibroek TJ, Frontera A. Phys. Chem. Chem. Phys. 2014; 16: 19192
    • 5e Bauza A, Mooibroek TJ, Frontera A. Chem. Commun. 2014; 50: 12626
    • 6a Clark T. WIREs Comput. Mol. Sci. 2013; 3: 13
    • 6b Politzer P, Murray JS, Clark T. Phys. Chem. Chem. Phys. 2013; 15: 11178
    • 6c Bauza A, Mooibroek TJ, Frontera A. ChemPhysChem 2015; 16: 2496
    • 6d Crabtree RH. Chem. Soc. Rev. 2017; 46: 1720
    • 7a Burgi HB. Angew. Chem. Int. Ed. 1975; 14: 460
    • 7b Bartlett GJ, Choudhary A, Raines RT, Woolfson DN. Nat. Chem. Biol. 2010; 6: 615
    • 7c Doppert MT, van Overeem H, Mooibroek TJ. Chem. Commun. 2018; 54: 12049
    • 7d Ruigrok van der Werve A, van Dijk YR, Mooibroek TJ. Chem. Commun. 2018; 54: 10742
    • 7e Lewinski J, Bury W, Justyniak W. Eur. J. Inorg. Chem. 2005; 4490
    • 7f Echeverria J. Chem. Commun. 2018; 54: 3061
    • 8a Gamez P, Mooibroek TJ, Teat SJ, Reedijk J. Acc. Chem. Res. 2007; 40: 435
    • 8b Gamez P. Inorg. Chem. Front. 2014; 1: 35
  • 9 Murray JS, Lane P, Clark T, Riley KE, Politzer P. J. Mol. Model. 2012; 18: 541
    • 10a Schottel BL, Chifotides HT, Dunbar KR. Chem. Soc. Rev. 2008; 37: 68
    • 10b Mooibroek TJ, Gamez P. CrystEngComm 2012; 14: 1027
    • 10c Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J. Angew. Chem. Int. Ed. 2011; 50: 9564
    • 10d Mooibroek TJ, Gamez P, Reedijk J. CrystEngComm 2008; 10: 1501
    • 11a Bauza A, Mooibroek TJ, Frontera A. Chem. Commun. 2015; 51: 1491
    • 11b Bauza A, Frontera A, Mooibroek TJ. Cryst. Growth Des. 2016; 16: 5520
    • 11c Bauza A, Sharko AV, Senchyk GA, Rusanov EB, Frontera A, Domasevitch KV. CrystEngComm 2017; 19: 1933
    • 11d Li W, Spada L, Tasinato N, Rampino S, Evangelisti L, Gualandi A, Cozzi PG, Melandri S, Barone V, Puzzarini C. Angew. Chem. Int. Ed. 2018; 57: 13853
    • 11e Franconetti A, Frontera A, Mooibroek TJ. Cryst Eng Comm 2019; 21: 5410
  • 12 Bauza A, Frontera A, Mooibroek TJ. Chem. Eur. J. 2019; 25 DOI: in press; org/10.1002/chem.201903404.
  • 13 Bauza A, Frontera A, Mooibroek TJ. Nat. Commun. 2017; 8: 14522
  • 14 Mooibroek TJ. CrystEngComm 2017; 19: 4485
  • 15 Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, Smith R, Dunkman WB, Loeb H, Wong ML, Bhat G, Goldman S, Fletcher RD, Doherty J, Hughes CV, Carson P, Cintron G, Shabetai R, Haakenson C. N. Engl. J. Med. 1991; 325: 303
  • 16 Neu HC. Science 1992; 257: 1064
  • 17 https://www.who.int/medicines/publications/essentialmedicines/en/.
  • 19 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 19
  • 21 te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJ. A, Snijders JG, Ziegler T. J. Comput. Chem. 2001; 22: 931
  • 22 Bader RF. W. Acc. Chem. Res. 1985; 18: 9
    • 23a Allen FH. Acta Crystallogr. Sect., B 2002; 58: 380
    • 23b Groom CR, Bruno IJ, Lightfoot MP, Ward SC. Acta Crystallogr., Sect. B 2016; 72: 171
  • 24 Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R. Acta Crystallogr., Sect. B 2002; 58: 389
  • 25 Bondi A. J. Phys. Chem. 1964; 68: 441
  • 26 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. Nucleic Acids Res. 2000; 28: 235
  • 27 The relevance of π-hole interactions in nitrate esters has been highlighted before in reference11b, but not with a complete list of approved medicine. For completion this list is provided as entries 8.1–8.9 in Table S1. A full list of nitro aromatic medicine is available in the supporting information accompanying reference 12.
  • 28 The Reaxys® database lists nearly 60 000 nitro compounds (not NO3 , RONO2, or R5C6NO2) with available pharmacological data (April 5, 2019), of which 30 are listed as approved drugs.
  • 29 Olender D, Zwawiak J, Zaprutko L. Pharmaceuticals 2018; 11: 29
  • 30 The only approved nitro aliphatic is the widely used antimicrobic Bronopol (Onyxide 500, see entry 7 in Table S1, reference 31). π-Hole interactions with nitro aliphatics like nitromethane are addressed in reference 11a.
    • 31a Shepherd JA, Waigh RD, Gilbert P. Antimicrob. Agents Chemother. 1988; 32: 1693
    • 31b Bryce DM, Croshaw B, Hall JE, Holland VR, Lessel B. J. Soc. Cosmet. Chem. 1978; 29: 3
  • 32 Hooton TM, Stamm WE. Infect. Dis. Clin. North Am. 1997; 11: 551
    • 33a Rassi A, Rassi A, Marin-Neto JA. Lancet 2010; 375: 1388
    • 33b Viotti R, Vigliano C, Lococo B, Bertocchi G, Petti M, Alvarez MG, Postan M, Armenti A. Ann. Intern. Med. 2006; 144: 724
    • 34a Barrett MP, Croft SL. Br. Med. Bull. 2012; 104: 175
    • 34b Brun R, Don R, Jacobs RT, Wang MZ, Barrett MP. Future Microbiol. 2011; 6: 677
  • 35 Wust J. Antimicrob. Agents Chemother. 1977; 11: 631
    • 36a Skripconoka V, Danilovits M, Pehme L, Tomsonl T, Skenders G, Kummile T, Cirule A, Leimane V, Kurvell A, Levinalr K, Geiter LJ, Manisser D, Wells CD. Eur. Resp. J. 2013; 41: 1393
    • 36b Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao HP, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao MQ, Awad M, Park SK, Shim TS, Suh GY, Danilovits M, Ogata H, Kurve A, Chang J, Suzuki K, Tupasi T, Koh WJ, Seaworth B, Geiter LJ, Wells CD. N. Engl. J. Med. 2012; 366: 2151
    • 37a Dubinsky MC. Clin. Gastroenterol. Hepatol. 2004; 2: 731
    • 37b Aberra FN, Lewis JD, Hass D, Rombeau JL, Osborne B, Lichtenstein GR. Gastroenterology 2003; 125: 320
    • 38a Amadi B, Mwiya M, Musuku J, Watuka A, Sianongo S, Ayoub A, Kelly P. Lancet 2002; 360: 1375
    • 38b Fox LM, Saravolatz LD. Clin. Infect. Dis. 2005; 40: 1173
    • 38c Rossignol JF. Antiviral Res. 2014; 110: 94
    • 39a Suerbaum S, Michetti P. N. Engl. J. Med. 2002; 347: 1175
    • 39b Hentschel E, Brandstatter G, Dragosics B, Hirschl AM, Nemec H, Schutze K, Taufer M, Wurzer H. N. Engl. J. Med. 1993; 328: 308
  • 40 Grimme S. WIREs Comput. Mol. Sci. 2011; 1: 211
  • 41 This search was limited to single crystal structures where all 3D coordinates were determined and R ≤0.1 and resulted in CIFs (CIFs with nitroN···ElR van der Waals overlap): 175 (34) nitrofurans 1, 251 (65) nitroimidazoles 2, 302 (63) nitroimidazoles 3, 73 (25) nitroimidazoles 4, 29 (7) nitrothiazoles 5, and 349 (93) nitroethelenedimines 6, of which 17 (0) of the type O2NCH=C(NR2)2. See Table S2 for an overview of structures with nitroN···ElR van der Waals overlap.
  • 42 Fun HK, Quah CK, Nithinchandra Kalluraya B. Acta Crystallogr., Sect. E. 2010; 66: O3031
  • 43 Qu Y, Wang J, Lu H, Gong F, Fan G, Wang J, Yang G. ChemistrySelect 2018; 3: 977
  • 44 Bruno FP, Caira MR, Monti GA, Kassuha DE, Sperandeo NR. J. Mol. Struct. 2010; 984: 51
  • 45 http://www.rcsb.org/3d-view/4ONM?preset=ligandInteraction&sele=N2F.
  • 46 Hodge CD, Edwards RA, Markin CJ, McDonald D, Pulvino M, Huen MS. Y, Zhao JY, Spyracopoulos L, Hendzel MJ, Glover JN. M. ACS Chem. Biol. 2015; 10: 1718
  • 47 http://www.rcsb.org/3d-view/4MO8?preset=ligandInteraction&sele=2VQ.
  • 48 Hofbauer S, Gysel K, Bellei M, Hagmuller A, Schaffner I, Mlynek G, Kostan J, Pirker KF, Daims H, Furtmuller PG, Battistuzzi G, Djinovic-Carugo K, Obinger C. Biochemistry 2014; 53: 77
  • 49 Zheng XH, Zhang LP, Chen WJ, Chen YY, Xie W, Hu XP. ChemMedChem 2012; 7: 1923
  • 51 Ihara M, Okajima T, Yamashita A, Oda T, Asano T, Matsui M, Sattelle DB, Matsuda K. Mol. Pharmacol. 2014; 86: 736
  • 52 http://www.rcsb.org/3d-view/3WTM?preset=ligandInteraction&sele=N1Y.
  • 53 http://www.rcsb.org/3d-view/8ACN?preset=ligandInteraction&sele=NIC.
  • 54 Lauble H, Kennedy MC, Beinert H, Stout CD. Biochemistry 1992; 31: 2748
  • 55 http://www.rcsb.org/3d-view/5E29?preset=ligandInteraction&sele=5JN.
  • 56 Xu GG, Deshpande TM, Ghatge MS, Mehta AY, Omar AS. M, Ahmed MH, Venitz J, Abdulmalik O, Zhang Y, Safo MK. Biochemistry 2015; 54: 7192
  • 57 Ranaghan KE, Hung JE, Bartlett GJ, Mooibroek TJ, Harvey JN, Woolfson DN, van der Donk WA, Mulholland AJ. Chem. Sci. 2014; 5: 2191
  • 59 Veelders M, Bruckner S, Ott D, Unverzagt C, Mosch HU, Essen LO. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 22511
    • 60a Liu MY, Casida JE. Pest. Biochem. Physiol. 1993; 46: 40
    • 60b Tomizawa M, Casida JE. Annu. Rev. Pharmacol. Toxicol. 2005; 45: 247
  • 61 Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Eur. J. Med. Chem. 2019; 179: 367
    • 62a Reinhardt P, Piquemal JP. Int. J. Quantum Chem. 2009; 109: 3529
    • 62b Andric JM, Janjic GV, Ninkovic DB, Zaric SD. Phys. Chem. Chem. Phys. 2012; 14: 10896
  • 63 Mooibroek TJ, Gamez P. CrystEngComm 2012; 14: 8462
  • 64 Jiang H, Hu P, Ye J, Chaturvedi A, Zhang KK, Li YX, Long Y, Fichou D, Kloc C, Hu WP. Angew. Chem. Int. Ed. 2018; 57: 8875
  • 65 Scheiner S, Kar T, Gu YL. J. Biol. Chem. 2001; 276: 9832
  • 66 Allen FH, Baalham CA, Lommerse JP. M, Raithby PR. Acta Crystallogr., Sect. B 1998; 54: 320
    • 67a Vyas NK, Vyas MN, Quiocho FA. Science 1988; 242: 1290
    • 67b Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, Kiessling LL, Woolfson DN. J. Am. Chem. Soc. 2015; 137: 15152
    • 68a Mooibroek TJ, Crump MP, Davis AP. Org. Biomol. Chem. 2016; 14: 1930
    • 68b Rios P, Mooibroek TJ, Carter TS, Williams C, Wilson MR, Crump MP, Davis AP. Chem. Sci. 2017; 8: 4056
    • 68c Carter TS, Mooibroek TJ, Stewart PF. N, Crump MP, Galan MC, Davis AP. Angew. Chem. Int. Ed. 2016; 55: 9311
    • 68d Mooibroek TJ, Casas-Solvas JM, Harniman RL, Renney C, Carter TS, Crump MP, Davis AP. Nat. Chem. 2016; 8: 69
    • 68e Rios P, Carter TS, Mooibroek TJ, Crump MP, Lisbjerg M, Pittelkow M, Supekar NT, Boons GJ, Davis AP. Angew. Chem. Int. Ed. 2016; 55: 3387