Semin Liver Dis 2019; 39(04): 414-421
DOI: 10.1055/s-0039-1688443
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Immunosuppressive Drug Levels in Liver Transplant Recipients: Impact in Decision Making

Themistoklis Kourkoumpetis
1   Division of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
,
Josh Levitsky
2   Division of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
30. April 2019 (online)

Abstract

To prevent rejection, liver transplant providers largely base their management decisions on their clinical impression and pharmacokinetics. Clinical impression relies on assessing graft function, liver enzymes, and biopsy. High immunosuppressive drug levels, although minimizing rejection, are related to significant side effects such as nephrotoxicity and metabolic syndrome, contributing to long-term morbidity and mortality. Similarly, levels that are lower than necessary can decrease the rate of side effects with a potential toll on rejection and graft survival. Herein, the authors present an update on immunosuppressive drug level monitoring and manipulation strategies according to different scenarios and time from transplant. They also provide a brief overview of next level immunosuppression monitoring strategies that aim to properly balance rejection rates with drug side effect profiles.

 
  • References

  • 1 Charlton M, Levitsky J, Aqel B. , et al. International Liver Transplantation Society consensus statement on immunosuppression in liver transplant recipients. Transplantation 2018; 102 (05) 727-743
  • 2 Yokota S, Yoshida O, Ono Y, Geller DA, Thomson AW. Liver transplantation in the mouse: Insights into liver immunobiology, tissue injury, and allograft tolerance. Liver Transpl 2016; 22 (04) 536-546
  • 3 Nazzal M, Lentine KL, Naik AS. , et al. Center-driven and clinically driven variation in US liver transplant maintenance immunosuppression therapy: a national practice patterns analysis. Transplant Direct 2018; 4 (07) e364
  • 4 Lucey MR, Terrault N, Ojo L. , et al. Long-term management of the successful adult liver transplant: 2012 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Liver Transpl 2013; 19 (01) 3-26
  • 5 Schuh MJ, Massoglia G. Pharmacist impact on tacrolimus serum concentrations in liver transplant patients. Consult Pharm 2018; 33 (05) 268-272
  • 6 Shuker N, van Gelder T, Hesselink DA. Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management. Transplant Rev (Orlando) 2015; 29 (02) 78-84
  • 7 Starzl TE, Weil III R, Iwatsuki S. , et al. The use of cyclosporin A and prednisone in cadaver kidney transplantation. Surg Gynecol Obstet 1980; 151 (01) 17-26
  • 8 Pflugrad H, Schrader AK, Tryc AB. , et al. Long-term calcineurin inhibitor therapy and brain function in patients after liver transplantation. Liver Transpl 2018; 24 (01) 56-66
  • 9 Nagase K, Iwasaki K, Nozaki K, Noda K. Distribution and protein binding of FK506, a potent immunosuppressive macrolide lactone, in human blood and its uptake by erythrocytes. J Pharm Pharmacol 1994; 46 (02) 113-117
  • 10 Hess AD, Colombani PM. Mechanism of action of cyclosporine: role of calmodulin, cyclophilin, and other cyclosporine-binding proteins. Transplant Proc 1986; 18 (06) (Suppl. 05) 219-237
  • 11 Borel JF, Feurer C, Magnée C, Stähelin H. Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology 1977; 32 (06) 1017-1025
  • 12 Calne RY, Rolles K, White DJ. , et al. Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. Lancet 1979; 2 (8151): 1033-1036
  • 13 Montano-Loza AJ, Hansen BE, Corpechot C. , et al. Global PBC Study Group. Factors associated with recurrence of primary biliary cholangitis after liver transplantation and effects on graft and patient survival. Gastroenterology 2019; 156 (01) 96-107.e1
  • 14 Cantarovich M, Barkun JS, Tchervenkov JI, Besner JG, Aspeslet L, Metrakos P. Comparison of neoral dose monitoring with cyclosporine through levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation 1998; 66 (12) 1621-1627
  • 15 Wang CE, Lu KP, Chang Z, Guo ML, Qiao HL. Association of CYP3A4*1B genotype with Cyclosporin A pharmacokinetics in renal transplant recipients: a meta-analysis. Gene 2018; 664: 44-49
  • 16 Żochowska D, Wyzgał J, Pączek L. Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients. Ann Transplant 2012; 17 (03) 36-44
  • 17 Kato H, Usui M, Muraki Y. , et al. Intravenous administration of tacrolimus stabilizes control of blood concentration regardless of CYP3A5 polymorphism in living donor liver transplantation: comparison of intravenous infusion and oral administration in early postoperative period. Transplant Proc 2018; 50 (09) 2684-2689
  • 18 Roy JN, Lajoie J, Zijenah LS. , et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos 2005; 33 (07) 884-887
  • 19 Todo S, Podesta L, ChapChap P. , et al. Orthotopic liver transplantation in dogs receiving FK-506. Transplant Proc 1987; 19 (05) (Suppl. 06) 64-67
  • 20 Starzl TE, Todo S, Fung J, Demetris AJ, Venkataramman R, Jain A. FK 506 for liver, kidney, and pancreas transplantation. Lancet 1989; 2 (8670): 1000-1004
  • 21 Group USMFLS. ; U.S. Multicenter FK506 Liver Study Group. A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med 1994; 331 (17) 1110-1115
  • 22 Bismuth H. Comparison of FK 506- and cyclosporine-based immunosuppression: FK 506 therapy significantly reduces the incidence of acute, steroid-resistant, refractory, and chronic rejection whilst possessing a comparable safety profile. European FK 506 Multicenter Liver Study Group. Transplant Proc 1995; 27 (01) 45-49
  • 23 Liu Z, Cheng J, Powell E. , et al. Weight based tacrolimus trough concentrations post liver transplant. Intern Med J 2019; 49 (01) 79-83
  • 24 Full Prescribing Information of ASTAGRAF XL. Revised December 2015. Available at: https://www.astellas.us/docs/AstagrafXL.pdf . Accessed October 4, 2018
  • 25 Lieber SR, Helcer J, Leven E. , et al. Pretransplant psychosocial risk factors may not predict late nonadherence and graft rejection in adult liver transplant recipients. Exp Clin Transplant 2018; 16 (05) 533-540
  • 26 Lee EC, Kim SH, Park SJ. Safety and efficacy of once-daily prolonged-release tacrolimus in living donor liver transplantation: an open-label, prospective, single-arm, phase 4 study. Ann Transplant 2018; 23: 713-720
  • 27 Iwasaki M, Yano I, Fukatsu S. , et al. Pharmacokinetics and pharmacodynamics of once-daily tacrolimus compared with twice-daily tacrolimus in the early stage after living donor liver transplantation. Ther Drug Monit 2018; 40 (06) 675-681
  • 28 Altieri M, Delaval G, Kimmoun E, Allaire M, Salamé E, Dumortier J. Conversion from once-daily prolonged-release tacrolimus to once-daily extended-release tacrolimus in stable liver transplant recipients. Exp Clin Transplant 2018; 16 (03) 321-325
  • 29 Rodríguez-Perálvarez M, Germani G, Papastergiou V. , et al. Early tacrolimus exposure after liver transplantation: relationship with moderate/severe acute rejection and long-term outcome. J Hepatol 2013; 58 (02) 262-270
  • 30 Geng L, Wang LD, Huang JJ. , et al. Lower tacrolimus trough levels in the late period after living donor liver transplantation contribute to improvements in long-term clinical outcomes. Hepatobiliary Pancreat Dis Int 2018; 17 (03) 204-209
  • 31 Hebert MF, Zheng S, Hays K. , et al. Interpreting tacrolimus concentrations during pregnancy and postpartum. Transplantation 2013; 95 (07) 908-915
  • 32 Kovarik JM, Kaplan B, Silva HT. , et al. Pharmacokinetics of an everolimus-cyclosporine immunosuppressive regimen over the first 6 months after kidney transplantation. Am J Transplant 2003; 3 (05) 606-613
  • 33 Reichen J, Stickel F, Bhattacharya I, Matschke K, Maller E, Korth-Bradley J. Repeat-dose sirolimus pharmacokinetics and pharmacodynamics in patients with hepatic allografts. Eur J Clin Pharmacol 2012; 68 (05) 589-597
  • 34 Del Bello A, Congy-Jolivet N, Danjoux M. , et al. High tacrolimus intra-patient variability is associated with graft rejection, and de novo donor-specific antibodies occurrence after liver transplantation. World J Gastroenterol 2018; 24 (16) 1795-1802
  • 35 Sarvary E, Nemes B, Varga M. , et al. Significance of mycophenolate monitoring in liver transplant recipients: toward the cut-off level. Transplant Proc 2012; 44 (07) 2157-2161
  • 36 Coenen MJ, de Jong DJ, van Marrewijk CJ. , et al; TOPIC Recruitment Team. Identification of patients with variants in TPMT and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology 2015; 149 (04) 907-17.e7
  • 37 Miles CD, Westphal S, Liapakis A, Formica R. Simultaneous liver-kidney transplantation: impact on liver transplant patients and the kidney transplant waiting list. Curr Transplant Rep 2018; 5 (01) 1-6
  • 38 AbdulRahim N, Anderson L, Kotla S. , et al. Lack of benefit and potential harm of induction therapy in simultaneous liver-kidney transplants. Liver Transpl 2019; 25 (03) 411-424
  • 39 Hibi T, Nishida S, Sageshima J. , et al. Excessive immunosuppression as a potential cause of poor survival in simultaneous liver/kidney transplantation for hepatitis C. Transpl Int 2014; 27 (06) 606-616
  • 40 Levitsky J. Next level of immunosuppression: drug/immune monitoring. Liver Transpl 2011; 17 (Suppl. 03) S60-S65
  • 41 Janetzki S, Britten CM. ; MIATA Core Team. The role of the reporting framework MIATA within current efforts to advance immune monitoring. J Immunol Methods 2014; 409: 6-8
  • 42 Gambato M, Lens S, Navasa M, Forns X. Treatment options in patients with decompensated cirrhosis, pre- and post-transplantation. J Hepatol 2014; 61 (1, Suppl): S120-S131