Semin Liver Dis 2019; 39(03): 283-290
DOI: 10.1055/s-0039-1685524
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Lipid Droplet Formation and Lipophagy in Fatty Liver Disease

Ryan J. Schulze
1   Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota
,
Mark A. McNiven
1   Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Mayo Clinic, Rochester, Minnesota
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
30. April 2019 (online)

Abstract

Lipid droplets (LDs) are key sites of neutral lipid storage that can be found in all cells. Metabolic imbalances between the synthesis and degradation of LDs can result in the accumulation of significant amounts of lipid deposition, a characteristic feature of hepatocytes in patients with fatty liver disease, a leading indication for liver transplant in the United States. In this review, the authors highlight new literature related to the synthesis and autophagic catabolism of LDs, discussing key proteins and machinery involved in these processes. They also discuss recent findings that have revealed novel genetic risk factors associated with LD biology that contribute to lipid retention in the diseased liver.

 
  • References

  • 1 Younossi Z, Anstee QM, Marietti M. , et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15 (01) 11-20
  • 2 Younossi ZM, Blissett D, Blissett R. , et al. The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 2016; 64 (05) 1577-1586
  • 3 Wong RJ, Aguilar M, Cheung R. , et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148 (03) 547-555
  • 4 Singh S, Singh PP, Roberts LR, Sanchez W. Chemopreventive strategies in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2014; 11 (01) 45-54
  • 5 Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 656-665
  • 6 Altamirano J, Bataller R. Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 2011; 8 (09) 491-501
  • 7 Singal AK, Bataller R, Ahn J, Kamath PS, Shah VH. ACG Clinical Guideline: alcoholic liver disease. Am J Gastroenterol 2018; 113 (02) 175-194
  • 8 Bersuker K, Peterson CWH, To M. , et al. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev Cell 2018; 44 (01) 97.e7-112.e7
  • 9 Listenberger LL, Han X, Lewis SE. , et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003; 100 (06) 3077-3082
  • 10 van Rijn JM, Ardy RC, Kuloğlu Z. , et al. Intestinal failure and aberrant lipid metabolism in patients with DGAT1 deficiency. Gastroenterology 2018; 155 (01) 130.e15-143.e15
  • 11 Nguyen TB, Louie SM, Daniele JR. , et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev Cell 2017; 42 (01) 9.e5-21.e5
  • 12 Chen HC, Smith SJ, Ladha Z. , et al. Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest 2002; 109 (08) 1049-1055
  • 13 Smith SJ, Cases S, Jensen DR. , et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet 2000; 25 (01) 87-90
  • 14 Denison H, Nilsson C, Löfgren L. , et al. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes Metab 2014; 16 (04) 334-343
  • 15 Gluchowski NL, Chitraju C, Picoraro JA. , et al. Identification and characterization of a novel DGAT1 missense mutation associated with congenital diarrhea. J Lipid Res 2017; 58 (06) 1230-1237
  • 16 McFie PJ, Banman SL, Stone SJ. Diacylglycerol acyltransferase-2 contains a c-terminal sequence that interacts with lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863 (09) 1068-1081
  • 17 Stone SJ, Myers HM, Watkins SM. , et al. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J Biol Chem 2004; 279 (12) 11767-11776
  • 18 Yu XX, Murray SF, Pandey SK. , et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 2005; 42 (02) 362-371
  • 19 Yamaguchi K, Yang L, McCall S. , et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007; 45 (06) 1366-1374
  • 20 McLaren DG, Han S, Murphy BA. , et al. DGAT2 inhibition alters aspects of triglyceride metabolism in rodents but not in non-human primates. Cell Metab 2018; 27 (06) 1236-1248.e6
  • 21 Rogers MA, Liu J, Song BL, Li BL, Chang CC, Chang TY. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): enzymes with multiple sterols as substrates and as activators. J Steroid Biochem Mol Biol 2015; 151: 102-107
  • 22 Lopez AM, Chuang JC, Posey KS. , et al. PRD125, a potent and selective inhibitor of sterol O-acyltransferase 2 markedly reduces hepatic cholesteryl ester accumulation and improves liver function in lysosomal acid lipase-deficient mice. J Pharmacol Exp Ther 2015; 355 (02) 159-167
  • 23 Alger HM, Brown JM, Sawyer JK. , et al. Inhibition of acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) prevents dietary cholesterol-associated steatosis by enhancing hepatic triglyceride mobilization. J Biol Chem 2010; 285 (19) 14267-14274
  • 24 Blaner WS, O'Byrne SM, Wongsiriroj N. , et al. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta 2009; 1791 (06) 467-473
  • 25 Jophlin LL, Koutalos Y, Chen C, Shah V, Rockey DC. Hepatic stellate cells retain retinoid-laden lipid droplets after cellular transdifferentiation into activated myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2018; 315 (05) G713-G721
  • 26 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
  • 27 Choudhary V, Ojha N, Golden A, Prinz WA. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 2015; 211 (02) 261-271
  • 28 Henne WM, Reese ML, Goodman JM. The assembly of lipid droplets and their roles in challenged cells. EMBO J 2018; 37 (12) 37
  • 29 Wang H, Becuwe M, Housden BE. , et al. Seipin is required for converting nascent to mature lipid droplets. eLife 2016; 5: 5
  • 30 Szymanski KM, Binns D, Bartz R. , et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci U S A 2007; 104 (52) 20890-20895
  • 31 Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell 2015; 26 (04) 726-739
  • 32 Chorlay A, Thiam AR. An asymmetry in monolayer tension regulates lipid droplet budding direction. Biophys J 2018; 114 (03) 631-640
  • 33 Schott MB, Rasineni K, Weller SG. , et al. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure. J Biol Chem 2017; 292 (28) 11815-11828
  • 34 Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adipocytes. Annu Rev Nutr 2007; 27: 79-101
  • 35 Zechner R, Zimmermann R, Eichmann TO. , et al. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signaling. Cell Metab 2012; 15 (03) 279-291
  • 36 Zechner R, Madeo F, Kratky D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 2017; 18 (11) 671-684
  • 37 Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol 2018; 20 (03) 233-242
  • 38 Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 2014; 205 (04) 435-445
  • 39 Singh R, Kaushik S, Wang Y. , et al. Autophagy regulates lipid metabolism. Nature 2009; 458 (7242): 1131-1135
  • 40 McWilliams TG, Muqit MM. PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol 2017; 45: 83-91
  • 41 Rodger CE, McWilliams TG, Ganley IG. Mammalian mitophagy – from in vitro molecules to in vivo models. FEBS J 2018; 285 (07) 1185-1202
  • 42 Nordgren M, Francisco T, Lismont C. , et al. Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 2015; 11 (08) 1326-1340
  • 43 Zhang J, Tripathi DN, Jing J. , et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat Cell Biol 2015; 17 (10) 1259-1269
  • 44 Birgisdottir AB, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci 2013; 126 (Pt 15): 3237-3247
  • 45 Krahmer N, Hilger M, Kory N. , et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol Cell Proteomics 2013; 12 (05) 1115-1126
  • 46 Rasineni K, McVicker BL, Tuma DJ, McNiven MA, Casey CA. Rab GTPases associate with isolated lipid droplets (LDs) and show altered content after ethanol administration: potential role in alcohol-impaired LD metabolism. Alcohol Clin Exp Res 2014; 38 (02) 327-335
  • 47 Kiss RS, Nilsson T. Rab proteins implicated in lipid storage and mobilization. J Biomed Res 2014; 28 (03) 169-177
  • 48 Schroeder B, Schulze RJ, Weller SG, Sletten AC, Casey CA, McNiven MA. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015; 61 (06) 1896-1907
  • 49 Schulze RJ, Rasineni K, Weller SG. , et al. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatol Commun 2017; 1 (02) 140-152
  • 50 Li Z, Schulze RJ, Weller SG. , et al. A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci Adv 2016; 2 (12) e1601470
  • 51 Wang C, Liu Z, Huang X. Rab32 is important for autophagy and lipid storage in drosophila. PLoS One 2012; 7 (02) e32086
  • 52 Alto NM, Soderling J, Scott JD. Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 2002; 158 (04) 659-668
  • 53 Li Q, Wang J, Wan Y, Chen D. Depletion of Rab32 decreases intracellular lipid accumulation and induces lipolysis through enhancing ATGL expression in hepatocytes. Biochem Biophys Res Commun 2016; 471 (04) 492-496
  • 54 Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 2005; 280 (51) 42325-42335
  • 55 Ozeki S, Cheng J, Tauchi-Sato K, Hatano N, Taniguchi H, Fujimoto T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 2005; 118 (Pt 12): 2601-2611
  • 56 Gerondopoulos A, Bastos RN, Yoshimura S. , et al. Rab18 and a Rab18 GEF complex are required for normal ER structure. J Cell Biol 2014; 205 (05) 707-720
  • 57 Jayson CBK, Arlt H, Fischer AW, Lai ZW, Farese Jr RV, Walther TC. Rab18 is not necessary for lipid droplet biogenesis or turnover in human mammary carcinoma cells. Mol Biol Cell 2018; 29 (17) 2045-2054
  • 58 Xu D, Li Y, Wu L. , et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 2018; 217 (03) 975-995
  • 59 Yu L, McPhee CK, Zheng L. , et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010; 465 (7300): 942-946
  • 60 Schulze RJ, Weller SG, Schroeder B. , et al. Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol 2013; 203 (02) 315-326
  • 61 Sathyanarayan A, Mashek MT, Mashek DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Reports 2017; 19 (01) 1-9
  • 62 Martinez-Lopez N, Garcia-Macia M, Sahu S. , et al. Autophagy in the CNS and periphery coordinate lipophagy and lipolysis in the brown adipose tissue and liver. Cell Metab 2016; 23 (01) 113-127
  • 63 Kaushik S, Cuervo AM. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 2015; 17 (06) 759-770
  • 64 Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 2018; 19 (06) 365-381
  • 65 Czaja MJ. Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 2016; 61 (05) 1304-1313
  • 66 Kwanten WJ, Martinet W, Michielsen PP, Francque SM. Role of autophagy in the pathophysiology of nonalcoholic fatty liver disease: a controversial issue. World J Gastroenterol 2014; 20 (23) 7325-7338
  • 67 Martinez-Lopez N, Singh R. Autophagy and lipid droplets in the liver. Annu Rev Nutr 2015; 35: 215-237
  • 68 Settembre C, De Cegli R, Mansueto G. , et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15 (06) 647-658
  • 69 Zhang H, Yan S, Khambu B. , et al. Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy 2018; 14 (10) 1779-1795
  • 70 Zubiete-Franco I, García-Rodríguez JL, Martínez-Uña M. , et al. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J Hepatol 2016; 64 (02) 409-418
  • 71 Tanaka S, Hikita H, Tatsumi T. , et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 2016; 64 (06) 1994-2014
  • 72 Li Y, Chao X, Yang L. , et al. Impaired fasting-induced adaptive lipid droplet biogenesis in liver-specific Atg5-deficient mouse liver is mediated by persistent nuclear factor-like 2 activation. Am J Pathol 2018; 188 (08) 1833-1846
  • 73 Wang Y, Ding WX, Li T. Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863 (07) 726-733
  • 74 Ni HM, Williams JA, Yang H, Shi YH, Fan J, Ding WX. Targeting autophagy for the treatment of liver diseases. Pharmacol Res 2012; 66 (06) 463-474
  • 75 Lin CW, Zhang H, Li M. , et al. Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol 2013; 58 (05) 993-999
  • 76 Liu C, Liu L, Zhu HD. , et al. Celecoxib alleviates nonalcoholic fatty liver disease by restoring autophagic flux. Sci Rep 2018; 8 (01) 4108
  • 77 Wei CC, Luo Z, Hogstrand C. , et al. Zinc reduces hepatic lipid deposition and activates lipophagy via Zn2+/MTF-1/PPARα and Ca2+/CaMKKβ/AMPK pathways. FASEB J 2018; 32 (12) 6666-6680
  • 78 Wang L, Zhou J, Yan S, Lei G, Lee CH, Yin XM. Ethanol-triggered lipophagy requires SQSTM1 in AML12 hepatic cells. Sci Rep 2017; 7 (01) 12307
  • 79 Ding WX, Li M, Chen X. , et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 2010; 139 (05) 1740-1752
  • 80 Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R. , et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142 (04) 938-946
  • 81 Thoen LF, Guimarães EL, Dollé L. , et al. A role for autophagy during hepatic stellate cell activation. J Hepatol 2011; 55 (06) 1353-1360
  • 82 BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 2017; 66 (04) 1111-1124
  • 83 Romeo S, Kozlitina J, Xing C. , et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008; 40 (12) 1461-1465
  • 84 Smagris E, BasuRay S, Li J. , et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 2015; 61 (01) 108-118
  • 85 Abul-Husn NS, Cheng X, Li AH. , et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med 2018; 378 (12) 1096-1106