Semin Musculoskelet Radiol 2019; 23(03): 289-303
DOI: 10.1055/s-0039-1681050
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Standard and Advanced Imaging of Hip Osteoarthritis. What the Radiologist Should Know

Brady K. Huang
1   Department of Radiology, University of California, San Diego, San Diego, California
,
Weiken Tan
2   Department of Radiology, University Hospital of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
,
Kurt F. Scherer
3   Department of Radiology, AdventHealth, Orlando, Florida
,
Winston Rennie
2   Department of Radiology, University Hospital of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
,
Christine B. Chung
1   Department of Radiology, University of California, San Diego, San Diego, California
,
Laura W. Bancroft
3   Department of Radiology, AdventHealth, Orlando, Florida
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2019 (online)

Abstract

Osteoarthritis (OA) of the hip is caused by degeneration of articular cartilage and the underlying bone and can be divided into two types: primary (associated with advancing age) and secondary (subsequent to fractures, avascular necrosis, infection, developmental dysplasia, and femoroacetabular impingement). Radiography remains the first-line imaging modality for diagnosing and monitoring OA, due to its accessibility, low cost, and ease of interpretation. Kellgren-Lawrence and Tönnis classification systems are radiographic OA grading systems used primarily in research, and they reflect the degree of joint space narrowing, sclerosis, cysts, deformity of the femoral head and acetabulum, and osteophytes. Unenhanced computed tomography (CT) provides detailed visualization of the hip joint segments that may be difficult to appreciate on radiographs, such as the inferoposterior and posterolateral hip joint. CT arthrography, magnetic resonance imaging (MRI), and magnetic resonance arthrography with two-dimensional reconstructions can delineate labral abnormalities, cartilage lesions, and other intra-articular hip pathology. T2 and T2* mapping, delayed gadolinium-enhanced MRI of cartilage, T1rho, ultra-short echo time, and zero echo time are investigative MR techniques with promising evaluation of hip OA.

 
  • References

  • 1 Altman R, Alarcón G, Appelrouth D. , et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 1991; 34 (05) 505-514
  • 2 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16 (04) 494-502
  • 3 Felson DT, Lawrence RC, Dieppe PA. , et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000; 133 (08) 635-646
  • 4 Felson DT, Lawrence RC, Hochberg MC. , et al. Osteoarthritis: new insights. Part 2: treatment approaches. Ann Intern Med 2000; 133 (09) 726-737
  • 5 Lawrence RC, Felson DT, Helmick CG. , et al; National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008; 58 (01) 26-35
  • 6 Nho SJ, Kymes SM, Callaghan JJ, Felson DT. The burden of hip osteoarthritis in the United States: epidemiologic and economic considerations. J Am Acad Orthop Surg 2013; 21 (Suppl. 01) S1-S6
  • 7 Hall MJ, DeFrances CJ, Williams SN, Golosinskiy A, Schwartzman A. National hospital discharge survey: 2007 summary. Natl Health Stat Rep 2010; 26 (29) 1-20 , 24
  • 8 Weber MA, Merle C, Rehnitz C, Gotterbarm T. Modern radiological imaging of osteoarthritis of the hip joint with consideration of predisposing conditions. RoFo Fortschr Geb Rontgenstr Nuklearmed 2016; 188 (07) 635-651
  • 9 Bos PK, Van Melle ML, Osch JV. Articular cartilage repair and the evolving role of regenerative medicine. Open Access Surgery 2010; 3: 109-122
  • 10 Hunter DJ. Pharmacologic therapy for osteoarthritis—the era of disease modification. Nat Rev Rheumatol 2011; 7 (01) 13-22
  • 11 Gold GE, Cicuttini F, Crema MD. , et al. OARSI Clinical Trials Recommendations: Hip imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage 2015; 23 (05) 716-731
  • 12 Lim SJ, Park YS. Plain radiography of the hip: a review of radiographic techniques and image features. Hip Pelvis 2015; 27 (03) 125-134
  • 13 Conrozier T, Lequesne MG, Tron AM, Mathieu P, Berdah L, Vignon E. The effects of position on the radiographic joint space in osteoarthritis of the hip. Osteoarthritis Cartilage 1997; 5 (01) 17-22
  • 14 Lequesne MG, Laredo JD. The faux profil (oblique view) of the hip in the standing position. Contribution to the evaluation of osteoarthritis of the adult hip. Ann Rheum Dis 1998; 57 (11) 676-681
  • 15 Kohn MD, Sassoon AA, Fernando ND. Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res 2016; 474 (08) 1886-1893
  • 16 Braun HJ, Gold GE. Diagnosis of osteoarthritis: imaging. Bone 2012; 51 (02) 278-288
  • 17 Kellgren JH, Lawrence JS. The epidemiology of chronic rheumatism. In: Atlas of Standard Radiographs. Vol 2. Oxford, UK: Blackwell Scientific; 1963
  • 18 Tönnis D. Normal values of the hip joint for the evaluation of X-rays in children and adults. Clin Orthop Relat Res 1976; (119) 39-47
  • 19 Cubukcu D, Sarsan A, Alkan H. Relationships between pain, function and radiographic findings in osteoarthritis of the knee: a cross-sectional study. Arthritis (Egypt) 2012; 2012: 984060
  • 20 Finan PH, Buenaver LF, Bounds SC. , et al. Discordance between pain and radiographic severity in knee osteoarthritis: findings from quantitative sensory testing of central sensitization. Arthritis Rheum 2013; 65 (02) 363-372
  • 21 Kim C, Nevitt MC, Niu J. , et al. Association of hip pain with radiographic evidence of hip osteoarthritis: diagnostic test study. BMJ 2015; 351: h5983
  • 22 Amin S, LaValley MP, Guermazi A. , et al. The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum 2005; 52 (10) 3152-3159
  • 23 Maksymowych WP, Pitts M, Budak MJ. , et al. Development and preliminary validation of a digital overlay-based learning module for semiquantitative evaluation of magnetic resonance imaging lesions in osteoarthritis of the hip. J Rheumatol 2016; 43 (01) 232-238
  • 24 Wyles CC, Norambuena GA, Howe BM. , et al. Cam deformities and limited hip range of motion are associated with early osteoarthritic changes in adolescent athletes: a prospective matched cohort study. Am J Sports Med 2017; 45 (13) 3036-3043
  • 25 Hinton G, Deng L, Yu D. , et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing 2012; 29: 82-97
  • 26 Parkhi OM, Vedaldi A, Zisserman A. Deep face recognition. Paper presented at: British Machine Vision Conference; September 2015; Swansea, UK
  • 27 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 2012; 1-9
  • 28 Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 2018; 19 (06) 1236-1246
  • 29 Antony J, McGuinness K, O'Connor NE. , et al. Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks. Paper presented at: 23rd International Conference on Pattern Recognition (ICPR). Institute of Electrical and Electronics Engineers 2016:1195–1200
  • 30 Tiulpin A, Thevenot J, Rahtu E, Lehenkari P, Saarakkala S. Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach. Sci Rep 2018; 8 (01) 1727
  • 31 Xue Y, Zhang R, Deng Y, Chen K, Jiang T. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One 2017; 12 (06) e0178992
  • 32 Coakley FV, Gould R, Yeh BM, Arenson RL. CT radiation dose: what can you do right now in your practice?. AJR Am J Roentgenol 2011; 196 (03) 619-625
  • 33 Turmezei TD, Lomas DJ, Hopper MA, Poole KE. Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography. Osteoarthritis Cartilage 2014; 22 (10) 1488-1498
  • 34 Dickenson E, Wall PDH, Robinson B. , et al. Prevalence of cam hip shape morphology: a systematic review. Osteoarthritis Cartilage 2016; 24 (06) 949-961
  • 35 Jacobsen S, Sonne-Holm S. Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey. Rheumatology (Oxford) 2005; 44 (02) 211-218
  • 36 Ganz R, Parvizi J, Beck M, Leunig M, Nötzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 2003; (417) 112-120
  • 37 Beck M, Kalhor M, Leunig M, Ganz R. Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 2005; 87 (07) 1012-1018
  • 38 Anderson LA, Peters CL, Park BB, Stoddard GJ, Erickson JA, Crim JR. Acetabular cartilage delamination in femoroacetabular impingement. Risk factors and magnetic resonance imaging diagnosis. J Bone Joint Surg Am 2009; 91 (02) 305-313
  • 39 Rasch A, Byström AH, Dalen N, Berg HE. Reduced muscle radiological density, cross-sectional area, and strength of major hip and knee muscles in 22 patients with hip osteoarthritis. Acta Orthop 2007; 78 (04) 505-510
  • 40 Momose T, Inaba Y, Choe H, Kobayashi N, Tezuka T, Saito T. CT-based analysis of muscle volume and degeneration of gluteus medius in patients with unilateral hip osteoarthritis. BMC Musculoskelet Disord 2017; 18 (01) 457
  • 41 Christie-Large M, Tapp MJF, Theivendran K, James SL. The role of multidetector CT arthrography in the investigation of suspected intra-articular hip pathology. Br J Radiol 2010; 83 (994) 861-867
  • 42 van Tiel J, Siebelt M, Reijman M. , et al. Quantitative in vivo CT arthrography of the human osteoarthritic knee to estimate cartilage sulphated glycosaminoglycan content: correlation with ex-vivo reference standards. Osteoarthritis Cartilage 2016; 24 (06) 1012-1020
  • 43 Chen C, Tambe DT, Deng L, Yang L. Biomechanical properties and mechanobiology of the articular chondrocyte. Am J Physiol Cell Physiol 2013; 305 (12) C1202-C1208
  • 44 Weinans H, Siebelt M, Agricola R, Botter SM, Piscaer TM, Waarsing JH. Pathophysiology of peri-articular bone changes in osteoarthritis. Bone 2012; 51 (02) 190-196
  • 45 Lee DC, Hoffmann PF, Kopperdahl DL, Keaveny TM. Phantomless calibration of CT scans for measurement of BMD and bone strength-Inter-operator reanalysis precision. Bone 2017; 103: 325-333
  • 46 Boomsma MF, Slouwerhof I, van Dalen JA. , et al. Use of internal references for assessing CT density measurements of the pelvis as replacement for use of an external phantom. Skeletal Radiol 2015; 44 (11) 1597-1602
  • 47 Mourad C, Laperre K, Halut M, Galant C, Van Cauter M, Vande Berg BC. Fused micro-computed tomography (μCT) and histological images of bone specimens. Diagn Interv Imaging 2018; 99 (7-8): 501-505
  • 48 Li ZC, Dai LY, Jiang LS, Qiu S. Difference in subchondral cancellous bone between postmenopausal women with hip osteoarthritis and osteoporotic fracture: implication for fatigue microdamage, bone microarchitecture, and biomechanical properties. Arthritis Rheum 2012; 64 (12) 3955-3962
  • 49 Djuric M, Zagorac S, Milovanovic P. , et al. Enhanced trabecular micro-architecture of the femoral neck in hip osteoarthritis vs. healthy controls: a micro-computer tomography study in postmenopausal women. Int Orthop 2013; 37 (01) 21-26
  • 50 Li XF, Cai XR, Fan F. , et al. Observation of sGAG content of human hip joint cartilage in different old age groups based on EPIC micro-CT. Connect Tissue Res 2015; 56 (02) 99-105
  • 51 Zhang ZM, Li ZC, Jiang LS, Jiang SD, Dai LY. Micro-CT and mechanical evaluation of subchondral trabecular bone structure between postmenopausal women with osteoarthritis and osteoporosis. Osteoporos Int 2010; 21 (08) 1383-1390
  • 52 Sudula SN. Imaging the hip joint in osteoarthritis: a place for ultrasound?. Ultrasound 2016; 24 (02) 111-118
  • 53 Bierma-Zeinstra SM, Bohnen AM, Verhaar JA, Prins A, Ginai-Karamat AZ, Laméris JS. Sonography for hip joint effusion in adults with hip pain. Ann Rheum Dis 2000; 59 (03) 178-182
  • 54 Koski JM, Anttila PJ, Isomäki HA. Ultrasonography of the adult hip joint. Scand J Rheumatol 1989; 18 (02) 113-117
  • 55 Qvistgaard E, Torp-Pedersen S, Christensen R, Bliddal H. Reproducibility and inter-reader agreement of a scoring system for ultrasound evaluation of hip osteoarthritis. Ann Rheum Dis 2006; 65 (12) 1613-1619
  • 56 Möller I, Bong D, Naredo E. , et al. Ultrasound in the study and monitoring of osteoarthritis. Osteoarthritis Cartilage 2008; 16 (Suppl. 03) S4-S7
  • 57 Tormenta S, Sconfienza LM, Iannessi F. , et al. Prevalence study of iliopsoas bursitis in a cohort of 860 patients affected by symptomatic hip osteoarthritis. Ultrasound Med Biol 2012; 38 (08) 1352-1356
  • 58 Diraçoğlu D, Alptekin K, Dikici F, Balci HI, Ozçakar L, Aksoy C. Evaluation of needle positioning during blind intra-articular hip injections for osteoarthritis: fluoroscopy versus arthrography. Arch Phys Med Rehabil 2009; 90 (12) 2112-2115
  • 59 Byrd JWT, Potts EA, Allison RK, Jones KS. Ultrasound-guided hip injections: a comparative study with fluoroscopy-guided injections. Arthroscopy 2014; 30 (01) 42-46
  • 60 Park KD, Kim TK, Bae BW, Ahn J, Lee WY, Park Y. Ultrasound guided intra-articular ketorolac versus corticosteroid injection in osteoarthritis of the hip: a retrospective comparative study. Skeletal Radiol 2015; 44 (09) 1333-1340
  • 61 Atchia I, Kane D, Reed MR, Isaacs JD, Birrell F. Efficacy of a single ultrasound-guided injection for the treatment of hip osteoarthritis. Ann Rheum Dis 2011; 70 (01) 110-116
  • 62 Micu MC, Bogdan GD, Fodor D. Steroid injection for hip osteoarthritis: efficacy under ultrasound guidance. Rheumatology (Oxford) 2010; 49 (08) 1490-1494
  • 63 Rivera F. Single intra-articular injection of high molecular weight hyaluronic acid for hip osteoarthritis. J Orthop Traumatol 2016; 17 (01) 21-26
  • 64 Bhadra AK, Altman R, Dasa V. , et al. Appropriate use criteria for hyaluronic acid in the treatment of knee osteoarthritis in the United States. Cartilage 2017; 8 (03) 234-254
  • 65 Migliore A, Massafra U, Frediani B. , et al. HyalOne® in the treatment of symptomatic hip OA—data from the ANTIAGE register: seven years of observation. Eur Rev Med Pharmacol Sci 2017; 21 (07) 1635-1644
  • 66 Abate M, Salini V. Efficacy and safety study on a new compound associating low and high molecular weight hyaluronic acid in the treatment of hip osteoarthritis. Int J Immunopathol Pharmacol 2017; 30 (01) 89-93
  • 67 Clementi D, D'Ambrosi R, Bertocco P. , et al. Efficacy of a single intra-articular injection of ultra-high molecular weight hyaluronic acid for hip osteoarthritis: a randomized controlled study. Eur J Orthop Surg Traumatol 2018; 28 (05) 915-922
  • 68 Rani N, Sabbioni G, Mazzotta A. , et al. Infiltrative therapy as conservative treatment in hip osteoarthritis: a literature review. Hip Int 2016; 26 (Suppl. 01) 8-13
  • 69 Sutter R, Zubler V, Hoffmann A. , et al. Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage?. AJR Am J Roentgenol 2014; 202 (01) 160-169
  • 70 Taljanovic MS, Graham AR, Benjamin JB. , et al. Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiol 2008; 37 (05) 423-431
  • 71 Klontzas ME, Zibis AH, Vassalou EE, Karantanas AH. MRI of the hip: current concepts on bone marrow oedema. Hip Int 2017; 27 (04) 329-335
  • 72 Lee S, Nardo L, Kumar D. , et al. Scoring hip osteoarthritis with MRI (SHOMRI): A whole joint osteoarthritis evaluation system. J Magn Reson Imaging 2015; 41 (06) 1549-1557
  • 73 Roemer FW, Hunter DJ, Winterstein A. , et al. Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage 2011; 19 (08) 946-962
  • 74 Jaremko JL, Pitts M, Maksymowych WP, Lambert RG. Development of imaging overlay and knowledge transfer module technologies aimed at enhancing feasibility and external validation of magnetic resonance imaging-based scoring systems. J Rheumatol 2016; 43 (01) 223-231
  • 75 Palmer A, Fernquest S, Rombach I. , et al. Diagnostic and prognostic value of delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) in early osteoarthritis of the hip. Osteoarthritis Cartilage 2017; 25 (09) 1468-1477
  • 76 Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology 1997; 205 (02) 546-550
  • 77 David-Vaudey E, Ghosh S, Ries M, Majumdar S. T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 2004; 22 (05) 673-682
  • 78 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8 (04) 355-368
  • 79 Ferro FP, Ho CP, Dornan GJ, Surowiec RK, Philippon MJ. Comparison of T2 values in the lateral and medial portions of the weight-bearing cartilage of the hip for patients with symptomatic femoroacetabular impingement and asymptomatic volunteers. Arthroscopy 2015; 31 (08) 1497-1506
  • 80 Ho CP, Surowiec RK, Frisbie DD. , et al. Prospective in vivo comparison of damaged and healthy-appearing articular cartilage specimens in patients with femoroacetabular impingement: comparison of T2 mapping, histologic endpoints, and arthroscopic grading. Arthroscopy 2016; 32 (08) 1601-1611
  • 81 Miese FR, Zilkens C, Holstein A. , et al. Assessment of early cartilage degeneration after slipped capital femoral epiphysis using T2 and T2* mapping. Acta Radiol 2011; 52 (01) 106-110
  • 82 Nishii T, Tanaka H, Sugano N, Sakai T, Hananouchi T, Yoshikawa H. Evaluation of cartilage matrix disorders by T2 relaxation time in patients with hip dysplasia. Osteoarthritis Cartilage 2008; 16 (02) 227-233
  • 83 Bittersohl B, Hosalkar HS, Hughes T. , et al. Feasibility of T2* mapping for the evaluation of hip joint cartilage at 1.5T using a three-dimensional (3D), gradient-echo (GRE) sequence: a prospective study. Magn Reson Med 2009; 62 (04) 896-901
  • 84 Williams A, Qian Y, Bear D, Chu CR. Assessing degeneration of human articular cartilage with ultra-short echo time (UTE) T2* mapping. Osteoarthritis Cartilage 2010; 18 (04) 539-546
  • 85 Hesper T, Schleich C, Buchwald A. , et al. T2* Mapping of the hip in asymptomatic volunteers with normal cartilage morphology: an analysis of regional and age-dependent distribution. Cartilage 2018; 9 (01) 30-37
  • 86 Bashir A, Gray ML, Burstein D. Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 1996; 36 (05) 665-673
  • 87 Tiderius CJ, Olsson LE, de Verdier H, Leander P, Ekberg O, Dahlberg L. Gd-DTPA2)-enhanced MRI of femoral knee cartilage: a dose-response study in healthy volunteers. Magn Reson Med 2001; 46 (06) 1067-1071
  • 88 Zilkens C, Miese F, Kim YJ. , et al. Three-dimensional delayed gadolinium-enhanced magnetic resonance imaging of hip joint cartilage at 3T: a prospective controlled study. Eur J Radiol 2012; 81 (11) 3420-3425
  • 89 Zilkens C, Tiderius CJ, Krauspe R, Bittersohl B. Current knowledge and importance of dGEMRIC techniques in diagnosis of hip joint diseases. Skeletal Radiol 2015; 44 (08) 1073-1083
  • 90 Domayer SE, Mamisch TC, Kress I, Chan J, Kim YJ. Radial dGEMRIC in developmental dysplasia of the hip and in femoroacetabular impingement: preliminary results. Osteoarthritis Cartilage 2010; 18 (11) 1421-1428
  • 91 Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 2003; 85-A (10) 1987-1992
  • 92 Mamisch TC, Kain MS, Bittersohl B. , et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in femoroacetabular impingement. J Orthop Res 2011; 29 (09) 1305-1311
  • 93 Stelzeneder D, Mamisch TC, Kress I. , et al. Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities. Osteoarthritis Cartilage 2012; 20 (07) 661-669
  • 94 Xu L, Su Y, Kienle KP. , et al. Evaluation of radial distribution of cartilage degeneration and necessity of pre-contrast measurements using radial dGEMRIC in adults with acetabular dysplasia. BMC Musculoskelet Disord 2012; 13: 212
  • 95 Zilkens C, Holstein A, Bittersohl B. , et al. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in the long-term follow-up after Perthes disease. J Pediatr Orthop 2010; 30 (02) 147-153
  • 96 Bittersohl B, Hosalkar HS, Werlen S, Trattnig S, Siebenrock KA, Mamisch TC. dGEMRIC and subsequent T1 mapping of the hip at 1.5 Tesla: normative data on zonal and radial distribution in asymptomatic volunteers. J Magn Reson Imaging 2011; 34 (01) 101-106
  • 97 Bittersohl B, Steppacher S, Haamberg T. , et al. Cartilage damage in femoroacetabular impingement (FAI): preliminary results on comparison of standard diagnostic vs delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC). Osteoarthritis Cartilage 2009; 17 (10) 1297-1306
  • 98 Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage to predict early failure of Bernese periacetabular osteotomy for hip dysplasia. J Bone Joint Surg Am 2006; 88 (07) 1540-1548
  • 99 Chandrasekaran S, Vemula SP, Lindner D, Lodhia P, Suarez-Ahedo C, Domb BG. Preoperative delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) for patients undergoing hip arthroscopy: indices are predictive of magnitude of improvement in two-year patient-reported outcomes. J Bone Joint Surg Am 2015; 97 (16) 1305-1315
  • 100 Schmaranzer F, Haefeli PC, Hanke MS. , et al. How does the dGEMRIC index change after surgical treatment for FAI? A prospective controlled study: preliminary results. Clin Orthop Relat Res 2017; 475 (04) 1080-1099
  • 101 Duvvuri U, Reddy R, Patel SD, Kaufman JH, Kneeland JB, Leigh JS. T1rho-relaxation in articular cartilage: effects of enzymatic degradation. Magn Reson Med 1997; 38 (06) 863-867
  • 102 Akella SV, Regatte RR, Gougoutas AJ. , et al. Proteoglycan-induced changes in T1ρ-relaxation of articular cartilage at 4T. Magn Reson Med 2001; 46 (03) 419-423
  • 103 Knox J, Pedoia V, Wang A. , et al. Longitudinal changes in MR T1ρ/T2 signal of meniscus and its association with cartilage T1p/T2 in ACL-injured patients. Osteoarthritis Cartilage 2018; 26 (05) 689-696
  • 104 Prasad AP, Nardo L, Schooler J, Joseph GB, Link TM. T1ρ and T2 relaxation times predict progression of knee osteoarthritis. Osteoarthritis Cartilage 2013; 21 (01) 69-76
  • 105 Wheaton AJ, Casey FL, Gougoutas AJ. , et al. Correlation of T1ρ with fixed charge density in cartilage. J Magn Reson Imaging 2004; 20 (03) 519-525
  • 106 Link TM, Neumann J, Li X. Prestructural cartilage assessment using MRI. J Magn Reson Imaging 2017; 45 (04) 949-965
  • 107 Anwander H, Melkus G, Rakhra KS, Beaulé PE. T1ρ MRI detects cartilage damage in asymptomatic individuals with a cam deformity. J Orthop Res 2016; 34 (06) 1004-1009
  • 108 Anwander H, Rakhra KS, Melkus G, Beaulé PE. T1ρ hip cartilage mapping in assessing patients with cam morphology: how can we optimize the regions of interest?. Clin Orthop Relat Res 2017; 475 (04) 1066-1075
  • 109 Subburaj K, Valentinitsch A, Dillon AB. , et al. Regional variations in MR relaxation of hip joint cartilage in subjects with and without femoroacetabular impingement. Magn Reson Imaging 2013; 31 (07) 1129-1136
  • 110 Samaan MA, Zhang AL, Gallo MC. , et al. Quantitative magnetic resonance arthrography in patients with femoroacetabular impingement. J Magn Reson Imaging 2016; 44 (06) 1539-1545
  • 111 Rakhra KS, Lattanzio PJ, Cárdenas-Blanco A, Cameron IG, Beaulé PE. Can T1-rho MRI detect acetabular cartilage degeneration in femoroacetabular impingement?: a pilot study. J Bone Joint Surg Br 2012; 94 (09) 1187-1192
  • 112 Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015; 41 (04) 870-883
  • 113 Bydder GM. Review. The Agfa Mayneord lecture: MRI of short and ultrashort T2 and T2* components of tissues, fluids and materials using clinical systems. Br J Radiol 2011; 84 (1008): 1067-1082
  • 114 Breighner RE, Endo Y, Konin GP, Gulotta LV, Koff MF, Potter HG. Technical developments: zero echo time imaging of the shoulder enhanced osseous detail by using MR imaging. Radiology 2018; 286 (03) 960-966