Thromb Haemost 2019; 119(04): 542-552
DOI: 10.1055/s-0039-1678664
Theme Issue Article
Georg Thieme Verlag KG Stuttgart · New York

Therapeutic Targeting of Neutrophil Extracellular Traps in Atherogenic Inflammation

Kristof Van Avondt
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
,
Lars Maegdefessel
2   Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
3   Molecular Vascular Medicine Group, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
4   DZHK, Partner Site Munich Heart Alliance, Munich, Germany
,
Oliver Soehnlein
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
4   DZHK, Partner Site Munich Heart Alliance, Munich, Germany
5   Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
6   Department of Medicine, Karolinska Institutet, Stockholm, Sweden
› Institutsangaben
Funding The authors are supported by the DFG (SFB914 TP B08, SFB1123 TP A06 & B05, SO876/6–1, SO876/11–1), the German Center for Cardiovascular Research (DZHK), the Fritz Thyssen Foundation, the Leducq foundation, the Else Kröner Fresenius Stiftung, the Vetenskapsrådet (2017–01762), the FöFoLe program of the LMU Munich and the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 675111.
Weitere Informationen

Publikationsverlauf

01. Oktober 2018

09. Dezember 2018

Publikationsdatum:
07. Februar 2019 (online)

Abstract

Neutrophils and neutrophil extracellular traps (NETs) have a robust relationship with atherothrombotic disease risk, which led to the idea that interfering with the release of NETs therapeutically would ameliorate atherosclerosis. In human studies, acute coronary events and the pro-thrombotic state cause markedly elevated levels of circulating deoxyribonucleic acid (DNA) and chromatin, suggesting that DNase I might produce cardiovascular benefit. DNase I reproduced the phenotype of peptidylarginine deiminase 4 (PAD4) deficiency and showed a significant benefit for atherothrombotic disease in experimental mouse models. However, the mechanisms of benefit remain unclear. Insights into the mechanisms underlying NET release and atherogenic inflammation have come from transgenic mouse studies. In particular, the importance of neutrophil NET formation in promoting atherothrombotic disease has been shown and linked to profound pro-inflammatory and pro-thrombotic effects, complement activation and endothelial dysfunction. Recent studies have shown that myeloid deficiency of PAD4 leads to diminished NET formation, which in turn protects against atherosclerosis burden, propagation of its thrombotic complications and notably macrophage inflammation in plaques. In addition, oxidative stress and neutrophil cholesterol accumulation have emerged as important factors driving NET release, likely involving mitochondrial reactive oxidants and neutrophil inflammasome activation. Further elucidation of the mechanisms linking hyperlipidaemia to the release of NETs may lead to the development of new therapeutics specifically targeting atherogenic inflammation, with likely benefit for cardiovascular diseases.

 
  • References

  • 1 Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17 (11) 1410-1422
  • 2 Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011; 12 (03) 204-212
  • 3 Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol 2015; 15 (02) 104-116
  • 4 Yvan-Charvet L, Welch C, Pagler TA. , et al. Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation 2008; 118 (18) 1837-1847
  • 5 Westerterp M, Murphy AJ, Wang M. , et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ Res 2013; 112 (11) 1456-1465
  • 6 Ridker PM, Everett BM, Thuren T. , et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 7 Drechsler M, Megens RTA, van Zandvoort M, Weber C, Soehnlein O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010; 122 (18) 1837-1845
  • 8 Westerterp M, Fotakis P, Ouimet M. , et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation 2018; 138 (09) 898-912
  • 9 Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 2005; 22 (03) 285-294
  • 10 Murphy AJ, Akhtari M, Tolani S. , et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 2011; 121 (10) 4138-4149
  • 11 Yvan-Charvet L, Pagler T, Gautier EL. , et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 2010; 328 (5986): 1689-1693
  • 12 Wang M, Subramanian M, Abramowicz S. , et al. Interleukin-3/granulocyte macrophage colony-stimulating factor receptor promotes stem cell expansion, monocytosis, and atheroma macrophage burden in mice with hematopoietic ApoE deficiency. Arterioscler Thromb Vasc Biol 2014; 34 (05) 976-984
  • 13 Christopher MJ, Link DC. Regulation of neutrophil homeostasis. Curr Opin Hematol 2007; 14 (01) 3-8
  • 14 Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 2010; 120 (07) 2423-2431
  • 15 Megens RTA, Vijayan S, Lievens D. , et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 2012; 107 (03) 597-598
  • 16 Chèvre R, González-Granado JM, Megens RTA. , et al. High-resolution imaging of intravascular atherogenic inflammation in live mice. Circ Res 2014; 114 (05) 770-779
  • 17 van Leeuwen M, Gijbels MJJ, Duijvestijn A. , et al. Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesions in LDLR-/- mice. Arterioscler Thromb Vasc Biol 2008; 28 (01) 84-89
  • 18 Rotzius P, Thams S, Soehnlein O. , et al. Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice. Am J Pathol 2010; 177 (01) 493-500
  • 19 Zernecke A, Bot I, Djalali-Talab Y. , et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 2008; 102 (02) 209-217
  • 20 Naruko T, Ueda M, Haze K. , et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002; 106 (23) 2894-2900
  • 21 Tavora FR, Ripple M, Li L, Burke AP. Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc Disord 2009; 9: 27
  • 22 Paul VSV, Paul CMP, Kuruvilla S. Quantification of various inflammatory cells in advanced atherosclerotic plaques. J Clin Diagn Res 2016; 10 (05) EC35-EC38
  • 23 van der Wal AC, Becker AE. Atherosclerotic plaque rupture—pathologic basis of plaque stability and instability. Cardiovasc Res 1999; 41 (02) 334-344
  • 24 Pertiwi KR, van der Wal AC, Pabittei DR. , et al. Neutrophil extracellular traps participate in all different types of thrombotic and haemorrhagic complications of coronary atherosclerosis. Thromb Haemost 2018; 118 (06) 1078-1087
  • 25 Ionita MG, van den Borne P, Catanzariti LM. , et al. High neutrophil numbers in human carotid atherosclerotic plaques are associated with characteristics of rupture-prone lesions. Arterioscler Thromb Vasc Biol 2010; 30 (09) 1842-1848
  • 26 Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 2015; 36 (22) 1394-1404
  • 27 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473 (7347): 317-325
  • 28 Horne BD, Anderson JL, John JM. , et al; Intermountain Heart Collaborative Study Group. Which white blood cell subtypes predict increased cardiovascular risk?. J Am Coll Cardiol 2005; 45 (10) 1638-1643
  • 29 Coller BS. Leukocytosis and ischemic vascular disease morbidity and mortality: is it time to intervene?. Arterioscler Thromb Vasc Biol 2005; 25 (04) 658-670
  • 30 Pende A, Artom N, Bertolotto M, Montecucco F, Dallegri F. Role of neutrophils in atherogenesis: an update. Eur J Clin Invest 2016; 46 (03) 252-263
  • 31 Borregaard N. Neutrophils, from marrow to microbes. Immunity 2010; 33 (05) 657-670
  • 32 Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11 (08) 519-531
  • 33 Soehnlein O, Kai-Larsen Y, Frithiof R. , et al. Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 2008; 118 (10) 3491-3502
  • 34 Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17 (04) 248-261
  • 35 Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology [Internet]; 2017 . Available at: http://www.nature.com/doifinder/10.1038/nri.2017.105. Accessed December 7, 2017
  • 36 Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23 (03) 279-287
  • 37 Van Avondt K, Hartl D. Mechanisms and disease relevance of neutrophil extracellular trap formation. Eur J Clin Invest 2018; 48 (Suppl. 02) e12919
  • 38 Mangold A, Alias S, Scherz T. , et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res 2015; 116 (07) 1182-1192
  • 39 Stakos DA, Kambas K, Konstantinidis T. , et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J 2015; 36 (22) 1405-1414
  • 40 Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349 (6245): 316-320
  • 41 Knight JS, Luo W, O'Dell AA. , et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ Res 2014; 114 (06) 947-956
  • 42 Liu Y, Carmona-Rivera C, Moore E. , et al. Myeloid-specific deletion of peptidylarginine deiminase 4 mitigates atherosclerosis. Front Immunol 2018; 9: 1680
  • 43 Franck G, Mawson TL, Folco EJ. , et al. Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion. Circ Res 2018; 123 (01) 33-42
  • 44 Döring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res 2017; 120 (04) 736-743
  • 45 Brinkmann V, Reichard U, Goosmann C. , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 46 Fuchs TA, Abed U, Goosmann C. , et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (02) 231-241
  • 47 Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 2010; 191 (03) 677-691
  • 48 Pilsczek FH, Salina D, Poon KKH. , et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 2010; 185 (12) 7413-7425
  • 49 Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 2009; 16 (11) 1438-1444
  • 50 Yipp BG, Petri B, Salina D. , et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 2012; 18 (09) 1386-1393
  • 51 Xu J, Zhang X, Pelayo R. , et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15 (11) 1318-1321
  • 52 Awasthi D, Nagarkoti S, Kumar A. , et al. Oxidized LDL induced extracellular trap formation in human neutrophils via TLR-PKC-IRAK-MAPK and NADPH-oxidase activation. Free Radic Biol Med 2016; 93: 190-203
  • 53 Wang Y, Wang W, Wang N, Tall AR, Tabas I. Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler Thromb Vasc Biol 2017; 37 (08) e99-e107
  • 54 Massberg S, Grahl L, von Bruehl M-L. , et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 55 Clark SR, Ma AC, Tavener SA. , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 56 Maugeri N, Campana L, Gavina M. , et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
  • 57 Sreeramkumar V, Adrover JM, Ballesteros I. , et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014; 346 (6214): 1234-1238
  • 58 Rossaint J, Herter JM, Van Aken H. , et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 2014; 123 (16) 2573-2584
  • 59 Vajen T, Koenen RR, Werner I. , et al. Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis. Sci Rep 2018; 8 (01) 10647
  • 60 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 61 von Brühl M-L, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 62 Stark K, Philippi V, Stockhausen S. , et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128 (20) 2435-2449
  • 63 Semeraro F, Ammollo CT, Morrissey JH. , et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 64 Brill A, Fuchs TA, Savchenko AS. , et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 65 Borissoff JI, Joosen IA, Versteylen MO. , et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013; 33 (08) 2032-2040
  • 66 Savchenko AS, Martinod K, Seidman MA. , et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost 2014; 12 (06) 860-870
  • 67 de Boer OJ, Li X, Teeling P. , et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 2013; 109 (02) 290-297
  • 68 Lande R, Ganguly D, Facchinetti V. , et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011; 3 (73) 73ra19
  • 69 Soehnlein O, Ortega-Gómez A, Döring Y, Weber C. Neutrophil-macrophage interplay in atherosclerosis: protease-mediated cytokine processing versus NET release. Thromb Haemost 2015; 114 (04) 866-867
  • 70 Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145 (03) 341-355
  • 71 Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20 (05) 1262-1275
  • 72 Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47 (8, Suppl): C13-C18
  • 73 Fujii K, Kobayashi Y, Mintz GS. , et al. Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation 2003; 108 (20) 2473-2478
  • 74 Tian J, Ren X, Vergallo R. , et al. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study. J Am Coll Cardiol 2014; 63 (21) 2209-2216
  • 75 Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol 2015; 35 (02) 288-295
  • 76 Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res 2012; 110 (06) 875-888
  • 77 Simon DI, Zidar D. Neutrophils in atherosclerosis: alarmin evidence of a hit and run?. Circ Res 2012; 110 (08) 1036-1038
  • 78 Pliyev BK, Menshikov M. Comparative evaluation of the role of the adhesion molecule CD177 in neutrophil interactions with platelets and endothelium. Eur J Haematol 2012; 89 (03) 236-244
  • 79 Drechsler M, Döring Y, Megens RTA, Soehnlein O. Neutrophilic granulocytes - promiscuous accelerators of atherosclerosis. Thromb Haemost 2011; 106 (05) 839-848
  • 80 Döring Y, Drechsler M, Wantha S. , et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res 2012; 110 (08) 1052-1056
  • 81 Kougias P, Chai H, Lin PH, Yao Q, Lumsden AB, Chen C. Defensins and cathelicidins: neutrophil peptides with roles in inflammation, hyperlipidemia and atherosclerosis. J Cell Mol Med 2005; 9 (01) 3-10
  • 82 Wang J, Sjöberg S, Tang T-T. , et al. Cathepsin G activity lowers plasma LDL and reduces atherosclerosis. Biochim Biophys Acta 2014; 1842 (11) 2174-2183
  • 83 Soehnlein O, Zernecke A, Eriksson EE. , et al. Neutrophil secretion products pave the way for inflammatory monocytes. Blood 2008; 112 (04) 1461-1471
  • 84 Wantha S, Alard J-E, Megens RTA. , et al. Neutrophil-derived cathelicidin promotes adhesion of classical monocytes. Circ Res 2013; 112 (05) 792-801
  • 85 Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. Journal of Clinical Investigation [Internet]; 2008 . Available at: http://www.jci.org/articles/view/35535 . Accessed September 21, 2018
  • 86 Podrez EA, Schmitt D, Hoff HF, Hazen SL. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 1999; 103 (11) 1547-1560
  • 87 Podrez EA, Febbraio M, Sheibani N. , et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 2000; 105 (08) 1095-1108
  • 88 Zhao B, Li Y, Buono C. , et al. Constitutive receptor-independent low density lipoprotein uptake and cholesterol accumulation by macrophages differentiated from human monocytes with macrophage-colony-stimulating factor (M-CSF). J Biol Chem 2006; 281 (23) 15757-15762
  • 89 Paulson KE, Zhu S-N, Chen M, Nurmohamed S, Jongstra-Bilen J, Cybulsky MI. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res 2010; 106 (02) 383-390
  • 90 Wang Y, Wang GZ, Rabinovitch PS, Tabas I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages. Circ Res 2014; 114 (03) 421-433
  • 91 Paulin N, Viola JR, Maas SL. , et al. Double-strand DNA sensing Aim2 inflammasome regulates atherosclerotic plaque vulnerability. Circulation 2018; 138 (03) 321-323
  • 92 Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 2010; 207 (09) 1853-1862
  • 93 Park B, Yim J-H, Lee H-K, Kim BO, Pyo S. Ramalin inhibits VCAM-1 expression and adhesion of monocyte to vascular smooth muscle cells through MAPK and PADI4-dependent NF-kB and AP-1 pathways. Biosci Biotechnol Biochem 2015; 79 (04) 539-552
  • 94 Jang B, Kim HW, Kim J-S. , et al. Peptidylarginine deiminase inhibition impairs Toll-like receptor agonist-induced functional maturation of dendritic cells, resulting in the loss of T cell-proliferative capacity: a partial mechanism with therapeutic potential in inflammatory settings. J Leukoc Biol 2015; 97 (02) 351-362
  • 95 Chang X, Yamada R, Suzuki A. , et al. Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology (Oxford) 2005; 44 (01) 40-50
  • 96 Chang H-H, Liu G-Y, Dwivedi N. , et al. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight 2016; 1 (17) e90045
  • 97 Lewis HD, Liddle J, Coote JE. , et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat Chem Biol 2015; 11 (03) 189-191
  • 98 Dorweiler B, Torzewski M, Dahm M, Kirkpatrick CJ, Lackner KJ, Vahl CF. Subendothelial infiltration of neutrophil granulocytes and liberation of matrix-destabilizing enzymes in an experimental model of human neo-intima. Thromb Haemost 2008; 99 (02) 373-381
  • 99 Gupta AK, Joshi MB, Philippova M. , et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584 (14) 3193-3197
  • 100 Carmona-Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann Rheum Dis 2015; 74 (07) 1417-1424
  • 101 Villanueva E, Yalavarthi S, Berthier CC. , et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187 (01) 538-552
  • 102 Rekhter MD. How to evaluate plaque vulnerability in animal models of atherosclerosis?. Cardiovasc Res 2002; 54 (01) 36-41
  • 103 Jia H, Abtahian F, Aguirre AD. , et al. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 2013; 62 (19) 1748-1758
  • 104 Franck G, Mawson T, Sausen G. , et al. Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: implications for superficial erosion. Circ Res 2017; 121 (01) 31-42
  • 105 Distelmaier K, Adlbrecht C, Jakowitsch J. , et al. Local complement activation triggers neutrophil recruitment to the site of thrombus formation in acute myocardial infarction. Thromb Haemost 2009; 102 (03) 564-572
  • 106 Ramaiola I, Padró T, Peña E. , et al. Changes in thrombus composition and profilin-1 release in acute myocardial infarction. Eur Heart J 2015; 36 (16) 965-975
  • 107 Yunoki K, Naruko T, Sugioka K. , et al. Erythrocyte-rich thrombus aspirated from patients with ST-elevation myocardial infarction: association with oxidative stress and its impact on myocardial reperfusion. Eur Heart J 2012; 33 (12) 1480-1490
  • 108 Silvain J, Collet J-P, Nagaswami C. , et al. Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol 2011; 57 (12) 1359-1367
  • 109 Rittersma SZH, van der Wal AC, Koch KT. , et al. Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation 2005; 111 (09) 1160-1165
  • 110 Riegger J, Byrne RA, Joner M. , et al; Prevention of Late Stent Thrombosis by an Interdisciplinary Global European Effort (PRESTIGE) Investigators. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J 2016; 37 (19) 1538-1549
  • 111 Darbousset R, Thomas GM, Mezouar S. , et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood 2012; 120 (10) 2133-2143
  • 112 Savchenko AS, Borissoff JI, Martinod K. , et al. VWF-mediated leukocyte recruitment with chromatin decondensation by PAD4 increases myocardial ischemia/reperfusion injury in mice. Blood 2014; 123 (01) 141-148
  • 113 Li X, de Boer OJ, Ploegmaker H. , et al. Granulocytes in coronary thrombus evolution after myocardial infarction—time-dependent changes in expression of matrix metalloproteinases. Cardiovasc Pathol 2016; 25 (01) 40-46
  • 114 Liu DJ, Peloso GM, Yu H. , et al; Charge Diabetes Working Group; EPIC-InterAct Consortium; EPIC-CVD Consortium; GOLD Consortium; VA Million Veteran Program. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017; 49 (12) 1758-1766
  • 115 Khera AV, Emdin CA, Drake I. , et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med 2016; 375 (24) 2349-2358
  • 116 Fernández-Friera L, Fuster V, López-Melgar B. , et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J Am Coll Cardiol 2017; 70 (24) 2979-2991
  • 117 Kirii H, Niwa T, Yamada Y. , et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23 (04) 656-660
  • 118 Duewell P, Kono H, Rayner KJ. , et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464 (7293): 1357-1361
  • 119 Mogayzel Jr PJ, Naureckas ET, Robinson KA. , et al; Pulmonary Clinical Practice Guidelines Committee. Cystic fibrosis pulmonary guidelines. Chronic medications for maintenance of lung health. Am J Respir Crit Care Med 2013; 187 (07) 680-689
  • 120 Wang H, Wang C, Zhao M-H, Chen M. Neutrophil extracellular traps can activate alternative complement pathways. Clin Exp Immunol 2015; 181 (03) 518-527
  • 121 Schreiber A, Rousselle A, Becker JU, von Mässenhausen A, Linkermann A, Kettritz R. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci U S A 2017; 114 (45) E9618-E9625
  • 122 Seok J, Warren HS, Cuenca AG. , et al; Inflammation and Host Response to Injury, Large Scale Collaborative Research Program. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 2013; 110 (09) 3507-3512
  • 123 Horckmans M, Ring L, Duchene J. , et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J 2017; 38 (03) 187-197
  • 124 Soehnlein O, Wantha S, Simsekyilmaz S. , et al. Neutrophil-derived cathelicidin protects from neointimal hyperplasia. Sci Transl Med 2011; 3 (103) 103ra98