Lee SI, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, Estey EH, Miller
CP, Chien S, Dai J, Saxena A, Blau CA, Becker PS. A machine learning approach to integrate
big data for precision medicine in acute myeloid leukemia. Nat Commun 2018 Jan;9(1):42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5752671/
Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE,
Brat DJ, Cooper LAD. Predicting cancer outcomes from histology and genomics using
convolutional networks. Proc Natl Acad Sci U S A 2018;115(13):E2970-E2979 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879673/
Sengupta S, Sun SQ, Huang KL, Oh C, Bailey MH, Varghese R, Wyczalkowski MA, Ning J,
Tripathi P, Mc Michael JF, Johnson KJ, Kandoth C, Welch J, Ma C, Wendl MC, Payne SH,
Fenyö D, Townsend RR, Dipersio JF, Chen F, Ding L. Integrative omics analyses broaden
treatment targets in human cancer. Genome Med 2018 Jul 27;10(1):60 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6064051/
Torshizi AD, Petzold LR. Graph-based semi-supervised learning with genomic data integration
using condition-responsive genes applied to phenotype classification. J Am Med Inform
Assoc 2018;25(1):99-108 https://academic.oup.com/jamia/article/25/1/99/3826530