Semin Thromb Hemost 2019; 45(07): 720-729
DOI: 10.1055/s-0038-1677020
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetic and Molecular Testing in Thrombosis and Hemostasis: Informing Surveillance, Treatment, and Prognosis

Philip Crispin
1   Canberra Hospital, Canberra, ACT, Australia
,
Ray Mun Koo
1   Canberra Hospital, Canberra, ACT, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
30 April 2019 (online)

Abstract

The understanding of molecular mechanisms brought about by the rapid expansion of gene sequencing has helped to characterize molecular interactions underpinning normal hemostasis and identify inherited and acquired risks for thrombosis and hemorrhage. The widespread availability of molecular testing may serve to replace some currently available investigations with more precise diagnostic tools and add to phenotypic tests. Molecular studies will increasingly enable prenatal diagnosis, confirm difficult diagnostic challenges, early intervention, and assist in prognostication. This approach facilitates specific individualization of treatment options, with personally targeted therapy expected to increase. There remain many challenges, however, in the clinic. Prior to any test there should be consideration of how the results may influence treatment, and also how they may affect the patient within their familial and social environments. Massive parallel sequencing has the capacity to produce results that create uncertainty that needs to be considered prior to testing. In this context, the potential benefits of adding phenotypic and genotypic personal data to large databases should be discussed with patients. There is a paradox in that personalized medicine is dependent on large datasets to interpret the significance of genetic variation. This review will provide an outline of specific current and emerging roles for molecular testing for the personalization of care in the practice of thrombosis and hemostasis and highlight principles that can be implemented as new opportunities inevitably arise with the rapid expansion of knowledge from genomics.

 
  • References

  • 1 Semsarian C, Ingles J. A clinical approach to genetic testing for non-specialists. BMJ 2017; 358: j4101
  • 2 Psaty BM, Dekkers OM, Cooper RS. Comparison of 2 treatment models: precision medicine and preventive medicine. JAMA 2018; 320 (08) 751-752
  • 3 Aronson SJ, Rehm HL. Building the foundation for genomics in precision medicine. Nature 2015; 526 (7573): 336-342
  • 4 Patch C, Middleton A. Genetic counselling in the era of genomic medicine. Br Med Bull 2018; 126 (01) 27-36
  • 5 Vig HS, Wang C. The evolution of personalized cancer genetic counseling in the era of personalized medicine. Fam Cancer 2012; 11 (03) 539-544
  • 6 Robson ME, Storm CD, Weitzel J, Wollins DS, Offit K. ; American Society of Clinical Oncology. American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 2010; 28 (05) 893-901
  • 7 Rumi E, Pietra D, Ferretti V. , et al; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014; 123 (10) 1544-1551
  • 8 Othman M. Platelet-type von Willebrand disease and type 2B von Willebrand disease: a story of nonidentical twins when two different genetic abnormalities evolve into similar phenotypes. Semin Thromb Hemost 2007; 33 (08) 780-786
  • 9 Peake IR, Lillicrap DP, Boulyjenkov V. , et al. Haemophilia: strategies for carrier detection and prenatal diagnosis. Bull World Health Organ 1993; 71 (3-4): 429-458
  • 10 Perrotta PL, Svensson AM. Molecular diagnostics in hemostatic disorders. Clin Lab Med 2009; 29 (02) 367-390
  • 11 ACMG Board of Directors. Points to consider for informed consent for genome/exome sequencing. Genet Med 2013; 15 (09) 748-749
  • 12 Lee EJ, Dykas DJ, Leavitt AD. , et al. Whole-exome sequencing in evaluation of patients with venous thromboembolism. Blood Adv 2017; 1 (16) 1224-1237
  • 13 Borry P, Evers-Kiebooms G, Cornel MC, Clarke A, Dierickx K. ; Public and Professional Policy Committee (PPPC) of the European Society of Human Genetics (ESHG). Genetic testing in asymptomatic minors: background considerations towards ESHG Recommendations. Eur J Hum Genet 2009; 17 (06) 711-719
  • 14 D'Andrea E, Lagerberg T, De Vito C. , et al. Patient experience and utility of genetic information: a cross-sectional study among patients tested for cancer susceptibility and thrombophilia. Eur J Hum Genet 2018; 26 (04) 518-526
  • 15 Richards S, Aziz N, Bale S. , et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17 (05) 405-424
  • 16 Wyrwich KW, Krishnan S, Auguste P. , et al. Changes in health-related quality of life with treatment of longer-acting clotting factors: results in the A-LONG and B-LONG clinical studies. Haemophilia 2016; 22 (06) 866-872
  • 17 Rangarajan S, Walsh L, Lester W. , et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med 2017; 377 (26) 2519-2530
  • 18 Korte W, Graf L. The potential close future of hemophilia treatment - Gene therapy, TFPI inhibition, antithrombin silencing, and mimicking factor VIII with an engineered antibody. Transfus Med Hemother 2018; 45 (02) 92-96
  • 19 Schwaab R, Brackmann HH, Meyer C. , et al. Haemophilia A: mutation type determines risk of inhibitor formation. Thromb Haemost 1995; 74 (06) 1402-1406
  • 20 Rosendaal FR, Palla R, Garagiola I, Mannucci PM, Peyvandi F. ; SIPPET Study Group. Genetic risk stratification to reduce inhibitor development in the early treatment of hemophilia A: a SIPPET analysis. Blood 2017; 130 (15) 1757-1759
  • 21 Calvez T, Chambost H, d'Oiron R. , et al; for FranceCoag Collaborators. Analyses of the FranceCoag cohort support differences in immunogenicity among one plasma-derived and two recombinant factor VIII brands in boys with severe hemophilia A. Haematologica 2018; 103 (01) 179-189
  • 22 Favaloro EJ, Mohammed S, Koutts J. Identification and prevalence of von Willebrand disease type 2N (Normandy) in Australia. Blood Coagul Fibrinolysis 2009; 20 (08) 706-714
  • 23 James PD, Lillicrap D. The molecular characterization of von Willebrand disease: good in parts. Br J Haematol 2013; 161 (02) 166-176
  • 24 European Association for Haemophilia and Allied Disorders. EAHAD Coagulation Factor Variant Databases: von Willebrand factor (VWF). In: Leiden Open Variation Database. Leiden, The Netherlands: Leiden University Medical Center; 2018
  • 25 Hassenpflug WA, Budde U, Obser T. , et al. Impact of mutations in the von Willebrand factor A2 domain on ADAMTS13-dependent proteolysis. Blood 2006; 107 (06) 2339-2345
  • 26 Albánez S, Ogiwara K, Michels A. , et al. Aging and ABO blood type influence von Willebrand factor and factor VIII levels through interrelated mechanisms. J Thromb Haemost 2016; 14 (05) 953-963
  • 27 Frontroth JP, Favaloro EJ. Ristocetin-induced platelet aggregation (RIPA) and RIPA mixing studies. Methods Mol Biol 2017; 1646: 473-494
  • 28 Jackson SC, Sinclair GD, Cloutier S, Duan Z, Rand ML, Poon MC. The Montreal platelet syndrome kindred has type 2B von Willebrand disease with the VWF V1316M mutation. Blood 2009; 113 (14) 3348-3351
  • 29 Dreyfus M, Desconclois C, Guitton C. , et al. First case of platelet-type Von Willebrand Disease (PT-VWD) associated with type 2B Von Willebrand Disease (2B VWD). Blood 2011; 118 (21) 5313
  • 30 Othman M, Kaur H, Favaloro EJ. , et al; Subcommittees on von Willebrand Disease and Platelet Physiology. Platelet type von Willebrand disease and registry report: communication from the SSC of the ISTH. J Thromb Haemost 2016; 14 (02) 411-414
  • 31 Castaman G, Goodeve A, Eikenboom J. ; European Group on von Willebrand Disease. Principles of care for the diagnosis and treatment of von Willebrand disease. Haematologica 2013; 98 (05) 667-674
  • 32 Lillicrap D. von Willebrand disease: advances in pathogenetic understanding, diagnosis, and therapy. Blood 2013; 122 (23) 3735-3740
  • 33 Bowman ML, Pluthero FG, Tuttle A. , et al. Discrepant platelet and plasma von Willebrand factor in von Willebrand disease patients with p.Pro2808Leufs*24. J Thromb Haemost 2017; 15 (07) 1403-1411
  • 34 Simeoni I, Stephens JC, Hu F. , et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016; 127 (23) 2791-2803
  • 35 Savoia A, De Rocco D, Pecci A. MYH9 gene mutations associated with bleeding. Platelets 2017; 28 (03) 312-315
  • 36 Leinøe E, Zetterberg E, Kinalis S. , et al. Application of whole-exome sequencing to direct the specific functional testing and diagnosis of rare inherited bleeding disorders in patients from the Öresund Region, Scandinavia. Br J Haematol 2017; 179 (02) 308-322
  • 37 Johnson B, Lowe GC, Futterer J. , et al; UK GAPP Study Group. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica 2016; 101 (10) 1170-1179
  • 38 Vrijenhoek T, Kraaijeveld K, Elferink M. , et al. Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects. Eur J Hum Genet 2015; 23 (09) 1142-1150
  • 39 Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664: 152-167
  • 40 Balduini CL, Savoia A. Genetics of familial forms of thrombocytopenia. Hum Genet 2012; 131 (12) 1821-1832
  • 41 Seri M, Pecci A, Di Bari F. , et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 2003; 82 (03) 203-215
  • 42 Pecci A, Klersy C, Gresele P. , et al. MYH9-related disease: a novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2014; 35 (02) 236-247
  • 43 Verver EJ, Topsakal V, Kunst HP. , et al. Nonmuscle myosin heavy chain IIA mutation predicts severity and progression of sensorineural hearing loss in patients with MYH9-related disease. Ear Hear 2016; 37 (01) 112-120
  • 44 Pecci A, Gresele P, Klersy C. , et al. Eltrombopag for the treatment of the inherited thrombocytopenia deriving from MYH9 mutations. Blood 2010; 116 (26) 5832-5837
  • 45 Latger-Cannard V, Philippe C, Bouquet A. , et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis 2016; 11: 49
  • 46 Owen CJ, Toze CL, Koochin A. , et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 2008; 112 (12) 4639-4645
  • 47 Growney JD, Shigematsu H, Li Z. , et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005; 106 (02) 494-504
  • 48 Melazzini F, Palombo F, Balduini A. , et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 2016; 101 (11) 1333-1342
  • 49 Noetzli L, Lo RW, Lee-Sherick AB. , et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 2015; 47 (05) 535-538
  • 50 Noris P, Favier R, Alessi MC. , et al. ANKRD26-related thrombocytopenia and myeloid malignancies. Blood 2013; 122 (11) 1987-1989
  • 51 Lancellotti S, Peyvandi F, Pagliari MT. , et al. The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura. A clinical, biochemical and in silico study. Thromb Haemost 2016; 115 (01) 51-62
  • 52 Pérez-Rodríguez A, Lourés E, Rodríguez-Trillo Á. , et al. Inherited ADAMTS13 deficiency (Upshaw-Schulman syndrome): a short review. Thromb Res 2014; 134 (06) 1171-1175
  • 53 Lo YM, Corbetta N, Chamberlain PF. , et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997; 350 (9076): 485-487
  • 54 Scheffer PG, Ait Soussan A, Verhagen OJ. , et al. Noninvasive fetal genotyping of human platelet antigen-1a. BJOG 2011; 118 (11) 1392-1395
  • 55 Wienzek-Lischka S, Krautwurst A, Fröhner V. , et al. Noninvasive fetal genotyping of human platelet antigen-1a using targeted massively parallel sequencing. Transfusion 2015; 55 (6 Pt 2): 1538-1544
  • 56 Weingarz L, Schwonberg J, Schindewolf M. , et al. Prevalence of thrombophilia according to age at the first manifestation of venous thromboembolism: results from the MAISTHRO registry. Br J Haematol 2013; 163 (05) 655-665
  • 57 Abdi AA, Osman A. Prevalence of common hereditary risk factors for thrombophilia in Somalia and identification of a novel Gln544Arg mutation in coagulation factor V. J Thromb Thrombolysis 2017; 44 (04) 536-543
  • 58 Tairaku S, Taniguchi-Ikeda M, Okazaki Y. , et al. Prenatal genetic testing for familial severe congenital protein C deficiency. Hum Genome Var 2015; 2: 15017
  • 59 De Stefano V, Rossi E. Testing for inherited thrombophilia and consequences for antithrombotic prophylaxis in patients with venous thromboembolism and their relatives. A review of the Guidelines from Scientific Societies and Working Groups. Thromb Haemost 2013; 110 (04) 697-705
  • 60 Dean L. Methylenetetrahydrofolate reductase deficiency. In: Pratt V, McLeod H, Rubinstein W, Dean L, Malheiro A. , eds. Medical Genetics Summaries. Bethesda, MD: National Center for Biotechnology Information (US); 2012
  • 61 Canadian Agency for Drugs and Technologies in Health. Effectiveness of Factor V Leiden and Prothrombin Mutation Testing in Patients Presenting With a First Unprovoked Venous Thromboembolic Episode: A Systematic Review and Economic Analysis. In: CADTH Optimal Use Reports. Ottawa, ON: CADTH; 2015
  • 62 Laberge A-M, Psaty BM, Hindorff LA, Burke W. Use of factor V Leiden genetic testing in practice and impact on management. Genet Med 2009; 11 (10) 750-756
  • 63 Sergi C, Al Jishi T, Walker M. Factor V Leiden mutation in women with early recurrent pregnancy loss: a meta-analysis and systematic review of the causal association. Arch Gynecol Obstet 2015; 291 (03) 671-679
  • 64 Pritchard AM, Hendrix PW, Paidas MJ. Hereditary thrombophilia and recurrent pregnancy loss. Clin Obstet Gynecol 2016; 59 (03) 487-497
  • 65 Rodger MA, Hague WM, Kingdom J. , et al; TIPPS Investigators. Antepartum dalteparin versus no antepartum dalteparin for the prevention of pregnancy complications in pregnant women with thrombophilia (TIPPS): a multinational open-label randomised trial. Lancet 2014; 384 (9955): 1673-1683
  • 66 Page JM, Silver RM. Genetic causes of recurrent pregnancy loss. Clin Obstet Gynecol 2016; 59 (03) 498-508
  • 67 Favaloro EJ, McDonald D. Futility of testing for factor V Leiden. Blood Transfus 2012; 10 (03) 260-263
  • 68 Arber DA, Orazi A, Hasserjian R. , et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127 (20) 2391-2405
  • 69 Li M, De Stefano V, Song T. , et al. Prevalence of CALR mutations in splanchnic vein thrombosis: a systematic review and meta-analysis. Thromb Res 2018; 167: 96-103
  • 70 Colaizzo D, Amitrano L, Guardascione MA. , et al. Outcome of patients with splanchnic venous thrombosis presenting without overt MPN: a role for the JAK2 V617F mutation re-evaluation. Thromb Res 2013; 132 (02) e99-e104
  • 71 Tait C, Baglin T, Watson H. , et al; British Committee for Standards in Haematology. Guidelines on the investigation and management of venous thrombosis at unusual sites. Br J Haematol 2012; 159 (01) 28-38
  • 72 Dezern AE, Borowitz MJ. ICCS/ESCCA consensus guidelines to detect GPI-deficient cells in paroxysmal nocturnal hemoglobinuria (PNH) and related disorders part 1 - clinical utility. Cytometry B Clin Cytom 2018; 94 (01) 16-22
  • 73 Flockhart DA, O'Kane D, Williams MS. , et al; ACMG Working Group on Pharmacogenetic Testing of CYP2C9, VKORC1 Alleles for Warfarin Use. Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med 2008; 10 (02) 139-150
  • 74 Serna MJ, Rivera-Caravaca JM, Gonzalez-Conejero R. , et al. Pharmacogenetics of vitamin K antagonists and bleeding risk prediction in atrial fibrillation. Eur J Clin Invest 2018; 48 (06) e12929
  • 75 Perreault S, Shahabi P, Côté R. , et al. Rationale, design, and preliminary results of the Quebec Warfarin Cohort Study. Clin Cardiol 2018; 41 (05) 576-585
  • 76 Nagler M, Angelillo-Scherrer A, Méan M. , et al. Long-term outcomes of elderly patients with CYP2C9 and VKORC1 variants treated with vitamin K antagonists. J Thromb Haemost 2017; 15 (11) 2165-2175
  • 77 Pengo V, Zambon CF, Fogar P. , et al. A randomized trial of pharmacogenetic warfarin dosing in naïve patients with non-valvular atrial fibrillation. PLoS One 2015; 10 (12) e0145318
  • 78 Pirmohamed M, Burnside G, Eriksson N. , et al; EU-PACT Group. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med 2013; 369 (24) 2294-2303
  • 79 Kimmel SE, French B, Kasner SE. , et al; COAG Investigators. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med 2013; 369 (24) 2283-2293
  • 80 Ayesh BM, Abu Shaaban AS, Abed AA. Evaluation of CYP2C9- and VKORC1-based pharmacogenetic algorithm for warfarin dose in Gaza-Palestine. Future Sci OA 2018; 4 (03) FSO276
  • 81 Makar-Aušperger K, Krželj K, Lovrić Benčić M, Radačić Aumiler M, Erdeljić Turk V, Božina N. Warfarin dosing according to the genotype-guided algorithm is most beneficial in patients with atrial fibrillation: a randomized parallel group trial. Ther Drug Monit 2018; 40 (03) 362-368
  • 82 Gage BF, Bass AR, Lin H. , et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: the GIFT randomized clinical trial. JAMA 2017; 318 (12) 1115-1124
  • 83 Verhoef TI, Ragia G, de Boer A. , et al; EU-PACT Group. A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. N Engl J Med 2013; 369 (24) 2304-2312
  • 84 Wen MS, Chang KC, Lee TH. , et al. Pharmacogenetic dosing of warfarin in the Han-Chinese population: a randomized trial. Pharmacogenomics 2017; 18 (03) 245-253
  • 85 Wang Y, Zhao X, Lin J. , et al; CHANCE investigators. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA 2016; 316 (01) 70-78
  • 86 Collet JP, Hulot JS, Pena A. , et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 2009; 373 (9660): 309-317
  • 87 Fontana P, Hulot JS, De Moerloose P, Gaussem P. Influence of CYP2C19 and CYP3A4 gene polymorphisms on clopidogrel responsiveness in healthy subjects. J Thromb Haemost 2007; 5 (10) 2153-2155
  • 88 McDonough CW, McClure LA, Mitchell BD. , et al. CYP2C19 metabolizer status and clopidogrel efficacy in the Secondary Prevention of Small Subcortical Strokes (SPS3) study. J Am Heart Assoc 2015; 4 (06) e001652
  • 89 Pan Y, Chen W, Xu Y. , et al. Genetic polymorphisms and clopidogrel efficacy for acute ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Circulation 2017; 135 (01) 21-33
  • 90 Huang B, Cui DJ, Ren Y, Han B, Yang DP, Zhao X. Effect of cytochrome P450 2C19*17 allelic variant on cardiovascular and cerebrovascular outcomes in clopidogrel-treated patients: a systematic review and meta-analysis. J Res Med Sci 2017; 22: 109
  • 91 Zhao Z, Li X, Sun S. , et al. Impact of genetic polymorphisms related to clopidogrel or acetylsalicylic acid pharmacology on clinical outcome in Chinese patients with symptomatic extracranial or intracranial stenosis. Eur J Clin Pharmacol 2016; 72 (10) 1195-1204
  • 92 Collet JP, Hulot JS, Cuisset T. , et al; ARCTIC investigators. Genetic and platelet function testing of antiplatelet therapy for percutaneous coronary intervention: the ARCTIC-GENE study. Eur J Clin Pharmacol 2015; 71 (11) 1315-1324
  • 93 Collet JP, Cuisset T, Rangé G. , et al; ARCTIC Investigators. Bedside monitoring to adjust antiplatelet therapy for coronary stenting. N Engl J Med 2012; 367 (22) 2100-2109
  • 94 Hochholzer W, Valina CM, Bömicke T. , et al. Intrinsic platelet reactivity before start with clopidogrel as predictor for on-clopidogrel platelet function and long-term clinical outcome. Thromb Haemost 2015; 114 (01) 109-114
  • 95 Geisler T, Schaeffeler E, Dippon J. , et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics 2008; 9 (09) 1251-1259
  • 96 Hochholzer W, Trenk D, Fromm MF. , et al. Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol 2010; 55 (22) 2427-2434
  • 97 Jiang XL, Samant S, Lewis JP. , et al. Development of a physiology-directed population pharmacokinetic and pharmacodynamic model for characterizing the impact of genetic and demographic factors on clopidogrel response in healthy adults. Eur J Pharm Sci 2016; 82: 64-78
  • 98 Amin AM, Sheau Chin L, Azri Mohamed Noor D, Sk Abdul Kader MA, Kah Hay Y, Ibrahim B. The personalization of clopidogrel antiplatelet therapy: the role of integrative pharmacogenetics and pharmacometabolomics. Cardiol Res Pract 2017; 2017: 8062796
  • 99 Hochholzer W, Ruff CT, Mesa RA. , et al. Variability of individual platelet reactivity over time in patients treated with clopidogrel: insights from the ELEVATE-TIMI 56 trial. J Am Coll Cardiol 2014; 64 (04) 361-368