Thromb Haemost 2019; 119(04): 534-541
DOI: 10.1055/s-0038-1676988
Theme Issue Article
Georg Thieme Verlag KG Stuttgart · New York

Atypical Chemokine Receptors in Cardiovascular Disease

Selin Gencer*
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
,
Emiel P. C. van der Vorst*
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
,
Maria Aslani
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
,
Christian Weber
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
2   German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
3   Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
,
Yvonne Döring*
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
2   German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
,
Johan Duchene*
1   Institute for Cardiovascular Prevention (IPEK), LMU Munich, Munich, Germany
› Institutsangaben
Funding The authors' research is supported by the DFG (SFB1123 TP A1) to Y.D. and C.W., by the DFG (SFB1123 TP A10) to J.D. and C.W. and by the Alexander von Humboldt Foundation to E.P.C.v.d.V.
Weitere Informationen

Publikationsverlauf

17. Oktober 2018

21. November 2018

Publikationsdatum:
04. Februar 2019 (online)

Abstract

Inflammation has been well recognized as one of the main drivers of atherosclerosis development and therefore cardiovascular diseases (CVDs). It has been shown that several chemokines, small 8 to 12 kDa cytokines with chemotactic properties, play a crucial role in the pathophysiology of atherosclerosis. Chemokines classically mediate their effects by binding to G-protein-coupled receptors called chemokine receptors. In addition, chemokines can also bind to atypical chemokine receptors (ACKRs). ACKRs fail to induce G-protein-dependent signalling pathways and thus subsequent cellular response, but instead are able to internalize, scavenge or transport chemokines. In this review, we will give an overview of the current knowledge about the involvement of ACKR1–4 in CVDs and especially in atherosclerosis development. In the recent years, several studies have highlighted the importance of ACKRs in CVDs, although there are still several controversies and unexplored aspects that have to be further elucidated. A better understanding of the precise role of these atypical receptors may pave the way towards novel and improved therapeutic strategies.

Note

After the acceptance of the current manuscript, a study by Girbl T et al demonstrating a new function for ACKR1 in leukocyte trafficking was published. This study showed that ACKR1, not only is involved in leukocyte adhesion11, but can also regulate leukocyte transendothelial migration. Indeed, CXCL2 produced by neutrophils is deposited on ACKR1 at endothelial junctions, and ACKR1-presented CXCL2 facilitates unidirectional luminal-to-abluminal migration of neutrophils.[95]


* These authors contributed equally to the manuscript and share first or last authorship.


 
  • References

  • 1 Bäck M, Weber C, Lutgens E. Regulation of atherosclerotic plaque inflammation. J Intern Med 2015; 278 (05) 462-482
  • 2 Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med 2015; 278 (05) 483-493
  • 3 Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat Rev Drug Discov 2010; 9 (02) 141-153
  • 4 Dahlöf B. Cardiovascular disease risk factors: epidemiology and risk assessment. Am J Cardiol 2010; 105 (1, Suppl): 3A-9A
  • 5 López-Cotarelo P, Gómez-Moreira C, Criado-García O, Sánchez L, Rodríguez-Fernández JL. Beyond chemoattraction: multifunctionality of chemokine receptors in leukocytes. Trends Immunol 2017; 38 (12) 927-941
  • 6 van der Vorst EPC, Döring Y, Weber C. Chemokines and their receptors in atherosclerosis. J Mol Med (Berl) 2015; 93 (09) 963-971
  • 7 Ulvmar MH, Hub E, Rot A. Atypical chemokine receptors. Exp Cell Res 2011; 317 (05) 556-568
  • 8 Sánchez-Martín L, Sánchez-Mateos P, Cabañas C. CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 2013; 19 (01) 12-22
  • 9 Benredjem B, Girard M, Rhainds D, St-Onge G, Heveker N. Mutational analysis of atypical chemokine receptor 3 (ACKR3/CXCR7) interaction with its chemokine ligands CXCL11 and CXCL12. J Biol Chem 2017; 292 (01) 31-42
  • 10 Betterman KL, Harvey NL. Decoys and cardiovascular development: CXCR7 and regulation of adrenomedullin signaling. Dev Cell 2014; 30 (05) 490-491
  • 11 Pruenster M, Mudde L, Bombosi P. , et al. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat Immunol 2009; 10 (01) 101-108
  • 12 Novitzky-Basso I, Rot A. Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines. Front Immunol 2012; 3: 266
  • 13 Howes RE, Patil AP, Piel FB. , et al. The global distribution of the Duffy blood group. Nat Commun 2011; 2: 266
  • 14 Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 1995; 10 (02) 224-228
  • 15 Duchene J, Novitzky-Basso I, Thiriot A. , et al. Atypical chemokine receptor 1 on nucleated erythroid cells regulates hematopoiesis. Nat Immunol 2017; 18 (07) 753-761
  • 16 Wan W, Liu Q, Lionakis MS. , et al. Atypical chemokine receptor 1 deficiency reduces atherogenesis in ApoE-knockout mice. Cardiovasc Res 2015; 106 (03) 478-487
  • 17 Thiriot A, Perdomo C, Cheng G. , et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol 2017; 15 (01) 45
  • 18 Hu D, Mohanta SK, Yin C. , et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity 2015; 42 (06) 1100-1115
  • 19 Unruh D, Srinivasan R, Benson T. , et al. Red blood cell dysfunction induced by high-fat diet: potential implications for obesity-related atherosclerosis. Circulation 2015; 132 (20) 1898-1908
  • 20 Carnethon MR, Pu J, Howard G. , et al; American Heart Association Council on Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Functional Genomics and Translational Biology; and Stroke Council. Cardiovascular health in African Americans: a scientific statement from the American Heart Association. Circulation 2017; 136 (21) e393-e423
  • 21 Nibbs RJ, Wylie SM, Pragnell IB, Graham GJ. Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1alpha receptors, CCR-1, CCR-3, and CCR-5. J Biol Chem 1997; 272 (19) 12495-12504
  • 22 Fra AM, Locati M, Otero K. , et al. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J Immunol 2003; 170 (05) 2279-2282
  • 23 Graham GJ. D6/ACKR2. Front Immunol 2015; 6: 280
  • 24 Bonecchi R, Garlanda C, Mantovani A, Riva F. Cytokine decoy and scavenger receptors as key regulators of immunity and inflammation. Cytokine 2016; 87: 37-45
  • 25 Bonavita O, Mollica Poeta V, Setten E, Massara M, Bonecchi R. ACKR2: an atypical chemokine receptor regulating lymphatic biology. Front Immunol 2017; 7: 691
  • 26 Lee KM, Danuser R, Stein JV, Graham D, Nibbs RJ, Graham GJ. The chemokine receptors ACKR2 and CCR2 reciprocally regulate lymphatic vessel density. EMBO J 2014; 33 (21) 2564-2580
  • 27 Savino B, Castor MG, Caronni N. , et al. Control of murine Ly6C(high) monocyte traffic and immunosuppressive activities by atypical chemokine receptor D6. Blood 2012; 119 (22) 5250-5260
  • 28 Massara M, Bonavita O, Savino B. , et al. ACKR2 in hematopoietic precursors as a checkpoint of neutrophil release and anti-metastatic activity. Nat Commun 2018; 9 (01) 676
  • 29 Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol 2015; 35 (05) 1066-1070
  • 30 Schloss MJ, Hilby M, Nitz K. , et al. Ly6Chigh monocytes oscillate in the heart during homeostasis and after myocardial infarction-brief report. Arterioscler Thromb Vasc Biol 2017; 37 (09) 1640-1645
  • 31 Cochain C, Auvynet C, Poupel L. , et al. The chemokine decoy receptor D6 prevents excessive inflammation and adverse ventricular remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol 2012; 32 (09) 2206-2213
  • 32 Horckmans M, Ring L, Duchene J. , et al. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur Heart J 2017; 38 (03) 187-197
  • 33 Sierro F, Biben C, Martínez-Muñoz L. , et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A 2007; 104 (37) 14759-14764
  • 34 Gerrits H, van Ingen Schenau DS, Bakker NE. , et al. Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. Genesis 2008; 46 (05) 235-245
  • 35 Libert F, Parmentier M, Lefort A. , et al. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science 1989; 244 (4904): 569-572
  • 36 Graham GJ, Locati M, Mantovani A, Rot A, Thelen M. The biochemistry and biology of the atypical chemokine receptors. Immunol Lett 2012; 145 (1-2): 30-38
  • 37 Gustavsson M, Wang L, van Gils N. , et al. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat Commun 2017; 8: 14135
  • 38 Burns JM, Summers BC, Wang Y. , et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203 (09) 2201-2213
  • 39 Balabanian K, Lagane B, Infantino S. , et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280 (42) 35760-35766
  • 40 Crump MP, Gong JH, Loetscher P. , et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J 1997; 16 (23) 6996-7007
  • 41 Luker KE, Steele JM, Mihalko LA, Ray P, Luker GD. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 2010; 29 (32) 4599-4610
  • 42 Hoffmann F, Müller W, Schütz D. , et al. Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal serine/threonine residues. J Biol Chem 2012; 287 (34) 28362-28377
  • 43 Boldajipour B, Mahabaleshwar H, Kardash E. , et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 2008; 132 (03) 463-473
  • 44 Li X, Zhu M, Penfold ME. , et al. Activation of CXCR7 limits atherosclerosis and improves hyperlipidemia by increasing cholesterol uptake in adipose tissue. Circulation 2014; 129 (11) 1244-1253
  • 45 Naumann U, Cameroni E, Pruenster M. , et al. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 2010; 5 (02) e9175
  • 46 Thelen M, Thelen S. CXCR7, CXCR4 and CXCL12: an eccentric trio?. J Neuroimmunol 2008; 198 (1-2): 9-13
  • 47 Uto-Konomi A, McKibben B, Wirtz J. , et al. CXCR7 agonists inhibit the function of CXCL12 by down-regulation of CXCR4. Biochem Biophys Res Commun 2013; 431 (04) 772-776
  • 48 Coggins NL, Trakimas D, Chang SL. , et al. CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7. PLoS One 2014; 9 (06) e98328
  • 49 Rajagopal S, Kim J, Ahn S. , et al. Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci U S A 2010; 107 (02) 628-632
  • 50 Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS, Heveker N. AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 2009; 75 (05) 1240-1247
  • 51 Chen D, Xia Y, Zuo K. , et al. Crosstalk between SDF-1/CXCR4 and SDF-1/CXCR7 in cardiac stem cell migration. Sci Rep 2015; 5: 16813
  • 52 Chen Q, Zhang M, Li Y. , et al. CXCR7 mediates neural progenitor cells migration to CXCL12 independent of CXCR4. Stem Cells 2015; 33 (08) 2574-2585
  • 53 Torossian F, Anginot A, Chabanon A. , et al. CXCR7 participates in CXCL12-induced CD34+ cell cycling through β-arrestin-dependent Akt activation. Blood 2014; 123 (02) 191-202
  • 54 Heinrich EL, Lee W, Lu J, Lowy AM, Kim J. Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J Transl Med 2012; 10: 68
  • 55 Wang C, Chen W, Shen J. CXCR7 targeting and its major disease relevance. Front Pharmacol 2018; 9: 641
  • 56 Chatterjee M, von Ungern-Sternberg SN, Seizer P. , et al. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis 2015; 6: e1989
  • 57 Alampour-Rajabi S, El Bounkari O, Rot A. , et al. MIF interacts with CXCR7 to promote receptor internalization, ERK1/2 and ZAP-70 signaling, and lymphocyte chemotaxis. FASEB J 2015; 29 (11) 4497-4511
  • 58 Kapas S, Clark AJ. Identification of an orphan receptor gene as a type 1 calcitonin gene-related peptide receptor. Biochem Biophys Res Commun 1995; 217 (03) 832-838
  • 59 Karin N. The multiple faces of CXCL12 (SDF-1alpha) in the regulation of immunity during health and disease. J Leukoc Biol 2010; 88 (03) 463-473
  • 60 Li M, Ransohoff RM. The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Semin Cancer Biol 2009; 19 (02) 111-115
  • 61 Samani NJ, Erdmann J, Hall AS. , et al; WTCCC and the Cardiogenics Consortium. Genome-wide association analysis of coronary artery disease. N Engl J Med 2007; 357 (05) 443-453
  • 62 Hao H, Hu S, Chen H. , et al. Loss of endothelial CXCR7 impairs vascular homeostasis and cardiac remodeling after myocardial infarction: implications for cardiovascular drug discovery. Circulation 2017; 135 (13) 1253-1264
  • 63 Dai X, Tan Y, Cai S. , et al. The role of CXCR7 on the adhesion, proliferation and angiogenesis of endothelial progenitor cells. J Cell Mol Med 2011; 15 (06) 1299-1309
  • 64 Yan X, Cai S, Xiong X. , et al. Chemokine receptor CXCR7 mediates human endothelial progenitor cells survival, angiogenesis, but not proliferation. J Cell Biochem 2012; 113 (04) 1437-1446
  • 65 Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95 (04) 343-353
  • 66 Dai X, Yan X, Zeng J. , et al. Elevating CXCR7 improves angiogenic function of EPCs via Akt/GSK-3β/Fyn-mediated Nrf2 activation in diabetic limb ischemia. Circ Res 2017; 120 (05) e7-e23
  • 67 Cao Z, Tong X, Xia W. , et al. CXCR7/p-ERK-signaling is a novel target for therapeutic vasculogenesis in patients with coronary artery disease. PLoS One 2016; 11 (09) e0161255
  • 68 Ma W, Liu Y, Ellison N, Shen J. Induction of C-X-C chemokine receptor type 7 (CXCR7) switches stromal cell-derived factor-1 (SDF-1) signaling and phagocytic activity in macrophages linked to atherosclerosis. J Biol Chem 2013; 288 (22) 15481-15494
  • 69 Ngamsri K-C, Müller A, Bösmüller H, Gamper-Tsigaras J, Reutershan J, Konrad FM. The pivotal role of CXCR7 in stabilization of the pulmonary epithelial barrier in acute pulmonary inflammation. J Immunol 2017; 198 (06) 2403-2413
  • 70 Peng H, Zhang H, Zhu H. Blocking CXCR7-mediated adipose tissue macrophages chemotaxis attenuates insulin resistance and inflammation in obesity. Biochem Biophys Res Commun 2016; 479 (04) 649-655
  • 71 Chang H-C, Huang PH, Syu FS. , et al. Critical involvement of atypical chemokine receptor CXCR7 in allergic airway inflammation. Immunology 2018; 154 (02) 274-284
  • 72 Mazzinghi B, Ronconi E, Lazzeri E. , et al. Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J Exp Med 2008; 205 (02) 479-490
  • 73 Comerford I, Milasta S, Morrow V, Milligan G, Nibbs R. The chemokine receptor CCX-CKR mediates effective scavenging of CCL19 in vitro. Eur J Immunol 2006; 36 (07) 1904-1916
  • 74 Ulvmar MH, Werth K, Braun A. , et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat Immunol 2014; 15 (07) 623-630
  • 75 Horckmans M, Bianchini M, Santovito D. , et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis, and cardiac function after myocardial infarction. Circulation 2018; 137 (09) 948-960
  • 76 Bénézech C, Luu NT, Walker JA. , et al. Inflammation-induced formation of fat-associated lymphoid clusters. Nat Immunol 2015; 16 (08) 819-828
  • 77 Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity 2012; 36 (05) 705-716
  • 78 Bachelerie F, Ben-Baruch A, Burkhardt AM. , et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66 (01) 1-79
  • 79 Schneider EH, Fowler SC, Lionakis MS. , et al. Regulation of motor function and behavior by atypical chemokine receptor 1. Behav Genet 2014; 44 (05) 498-515
  • 80 Neote K, Mak JY, Kolakowski Jr LF, Schall TJ. Functional and biochemical analysis of the cloned Duffy antigen: identity with the red blood cell chemokine receptor. Blood 1994; 84 (01) 44-52
  • 81 Chakera A, Seeber RM, John AE, Eidne KA, Greaves DR. The Duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol Pharmacol 2008; 73 (05) 1362-1370
  • 82 Vinet J, van Zwam M, Dijkstra IM. , et al. Inhibition of CXCR3-mediated chemotaxis by the human chemokine receptor-like protein CCX-CKR. Br J Pharmacol 2013; 168 (06) 1375-1387
  • 83 Nibbs RJ, Kriehuber E, Ponath PD. , et al. The beta-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am J Pathol 2001; 158 (03) 867-877
  • 84 Hansell CAH, Hurson CE, Nibbs RJB. DARC and D6: silent partners in chemokine regulation?. Immunol Cell Biol 2011; 89 (02) 197-206
  • 85 Gardner L, Patterson AM, Ashton BA, Stone MA, Middleton J. The human Duffy antigen binds selected inflammatory but not homeostatic chemokines. Biochem Biophys Res Commun 2004; 321 (02) 306-312
  • 86 Bachelerie F, Graham GJ, Locati M. , et al. New nomenclature for atypical chemokine receptors. Nat Immunol 2014; 15 (03) 207-208
  • 87 Bryce SA, Wilson RA, Tiplady EM. , et al. ACKR4 on stromal cells scavenges CCL19 to enable CCR7-dependent trafficking of APCs from inflamed skin to lymph nodes. J Immunol 2016; 196 (08) 3341-3353
  • 88 Thomson CA, van de Pavert SA, Stakenborg M. , et al. Expression of the atypical chemokine receptor ACKR4 identifies a novel population of intestinal submucosal fibroblasts that preferentially expresses endothelial cell regulators. J Immunol 2018; 201 (01) 215-229
  • 89 Puddinu V, Casella S, Radice E. , et al. ACKR3 expression on diffuse large B cell lymphoma is required for tumor spreading and tissue infiltration. Oncotarget 2017; 8 (49) 85068-85084
  • 90 Salvi V, Sozio F, Sozzani S, Del Prete A. Role of atypical chemokine receptors in microglial activation and polarization. Front Aging Neurosci 2017; 9: 148
  • 91 Berahovich RD, Zabel BA, Lewén S. , et al. Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 2014; 141 (01) 111-122
  • 92 Borroni EM, Cancellieri C, Vacchini A. , et al. β-arrestin-dependent activation of the cofilin pathway is required for the scavenging activity of the atypical chemokine receptor D6. Sci Signal 2013; 6 (273, ra30) 1-11 , S1–S3
  • 93 Bonecchi R, Borroni EM, Anselmo A. , et al. Regulation of D6 chemokine scavenging activity by ligand- and Rab11-dependent surface up-regulation. Blood 2008; 112 (03) 493-503
  • 94 Watts AO, Verkaar F, van der Lee MM. , et al. β-Arrestin recruitment and G protein signaling by the atypical human chemokine decoy receptor CCX-CKR. J Biol Chem 2013; 288 (10) 7169-7181
  • 95 Girbl T, Lenn T, Perez L. , et al. Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis. Immunity 2018; 49 (06) 1062-1076