Thromb Haemost 2019; 119(04): 517-533
DOI: 10.1055/s-0038-1676968
Theme Issue Article
Georg Thieme Verlag KG Stuttgart · New York

Sensing Glycans as Biochemical Messages by Tissue Lectins: The Sugar Code at Work in Vascular Biology

Herbert Kaltner
1   Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, München, Germany
,
Hans-Joachim Gabius
1   Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, München, Germany
› Author Affiliations
Further Information

Publication History

01 October 2018

15 November 2018

Publication Date:
08 January 2019 (online)

Abstract

Although a plethora of players has already been revealed to be engaged in the haemostatic system, a fundamental consideration of the molecular nature of information coding can give further explorations of the mechanisms of blood clotting, platelet functionality and vascular trafficking direction. By any measures, looking at ranges of occurrence and of potential for structural versatility, at strategic positioning to influence protein and cell sociology as well as at dynamics of processing and restructuring for phenotypic variability, using sugars as an alphabet of life for generating the glycan part of glycoconjugates is a success story. The handiwork by the complex system for glycan biosynthesis renders biochemical messages of exceptionally high coding capacity available. They are read and translated into cellular effects by receptors termed lectins. The different levels of regulation on both sides, that is, glycan and lectin, establish an intriguingly fine-tuned capacity for functional pairing. The emerging insights into the highly branched routes of glycosylation, into lectin structures up to complete characterization in solution and the shape of lectin networks, first obtained for the three selectins, now extended to considering many other C-type lectins, galectins and siglecs, as well as into intra- and inter-family cross-talk and cooperations are sure to push boundaries in our understanding of the molecular basis of haemostasis.

 
  • References

  • 1 Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009
  • 2 Bennett HS. Morphological aspects of extracellular polysaccha-rides. J Histochem Cytochem 1963; 11: 14-23
  • 3 Bettelheim-Jevons FR. Protein-carbohydrate complexes. Adv Protein Chem 1958; 13: 35-105
  • 4 Klenk E. On the discovery and chemistry of neuraminic acid and gangliosides. Chem Phys Lipids 1970; 5 (01) 193-197
  • 5 Sharon N. Complex Carbohydrates. Their Chemistry, Biosynthesis, and Functions. Reading, MA: Addison-Wesley Publ. Co.; 1975
  • 6 Montreuil J. The history of glycoprotein research, a personal view. In: Montreuil J, Vliegenthart JFG, Schachter H. , eds. Glycoproteins. Amsterdam, The Netherlands: Elsevier; 1995: 1-12
  • 7 Reuter G, Gabius H-J. Eukaryotic glycosylation: whim of nature or multipurpose tool?. Cell Mol Life Sci 1999; 55 (03) 368-422
  • 8 Buddecke E. Proteoglycans. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 199-216
  • 9 Merzendorfer H. Chitin: structure, function and metabolism. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 217-229
  • 10 Corfield AP, Berry M. Glycan variation and evolution in the eukaryotes. Trends Biochem Sci 2015; 40 (07) 351-359
  • 11 Tan FY, Tang CM, Exley RM. Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochem Sci 2015; 40 (07) 342-350
  • 12 Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147 (02) 119-147
  • 13 Kopitz J. Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147 (02) 175-198
  • 14 Schnaar RL, Lopez PHH. Preface and ganglioside nomenclature. Prog Mol Biol Transl Sci 2018; 156: xvii-xxi
  • 15 Laine RA. The information-storing potential of the sugar code. In: Gabius H-J, Gabius S. , eds. Glycosciences: Status and Perspectives. London, UK and Weinheim, Germany: Chapman & Hall; 1997: 1-14
  • 16 Roseman S. Reflections on glycobiology. J Biol Chem 2001; 276 (45) 41527-41542
  • 17 Kornfeld S. A lifetime of adventures in glycobiology. Annu Rev Biochem 2018; 87: 1-21
  • 18 Gesner BM, Ginsburg V. Effect of glycosidases on the fate of transfused lymphocytes. Proc Natl Acad Sci U S A 1964; 52: 750-755
  • 19 Morell AG, Irvine RA, Sternlieb I, Scheinberg IH, Ashwell G. Physical and chemical studies on ceruloplasmin. V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J Biol Chem 1968; 243 (01) 155-159
  • 20 Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids 1970; 5 (01) 270-297
  • 21 Winterburn PJ, Phelps CF. The significance of glycosylated proteins. Nature 1972; 236 (5343): 147-151
  • 22 Brockhausen I, Schachter H. Glycosyltransferases involved in N- and O-glycan biosynthesis. In: Gabius H-J, Gabius S. , eds. Glycosciences: Status and Perspectives. London, UK and Weinheim, Germany: Chapman & Hall; 1997: 79-113
  • 23 Sears P, Wong C-H. Enzyme action in glycoprotein synthesis. Cell Mol Life Sci 1998; 54 (03) 223-252
  • 24 Endo T. O-mannosyl glycans in mammals. Biochim Biophys Acta 1999; 1473 (01) 237-246
  • 25 Dall'Olio F, Chiricolo M. Sialyltransferases in cancer. Glycoconj J 2001; 18 (11-12): 841-850
  • 26 Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 2005; 15 (08) 805-817
  • 27 Patsos G, Corfield A. O-Glycosylation: structural diversity and function. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 111-137
  • 28 Wilson IBH, Paschinger H, Rendic D. Glycosylation of model and ‘lower’ organisms. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 139-154
  • 29 Zuber C, Roth J. N-Glycosylation. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 87-110
  • 30 Takashima S, Tsuji S. Functional diversity of mammalian sialyltransferases. Trends Glycosci Glycotechnol 2011; 23 (132) 178-193
  • 31 Aplin JD, Jones CJ. Fucose, placental evolution and the glycocode. Glycobiology 2012; 22 (04) 470-478
  • 32 Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012; 22 (06) 736-756
  • 33 Raman J, Guan Y, Perrine CL, Gerken TA, Tabak LA. UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases: completion of the family tree. Glycobiology 2012; 22 (06) 768-777
  • 34 Togayachi A, Narimatsu H. Functional analysis of β1,3-N-acetylglucosaminyltransferases and regulation of immunological function by polylactosamine. Trends Glycosci Glycotechnol 2012; 24 (137) 95-111
  • 35 Hennet T, Cabalzar J. Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci 2015; 40 (07) 377-384
  • 36 Schengrund C-L. Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 2015; 40 (07) 397-406
  • 37 Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147 (02) 149-174
  • 38 Honke K, Taniguchi N. Animal models to delineate glycan functionality. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 385-401
  • 39 Takamatsu S, Antonopoulos A, Ohtsubo K. , et al. Physiological and glycomic characterization of N-acetylglucosaminyltransferase-IVa and -IVb double deficient mice. Glycobiology 2010; 20 (04) 485-497
  • 40 Ohtsubo K. Biological significance of N-acetylglucosaminyltransferase-IV-mediated protein glycosylation on the homeostasis of cellular physiological functions. Trends Glycosci Glycotechnol 2011; 23 (130) 103-105
  • 41 Roth J. Subcellular organization of glycosylation in mammalian cells. Biochim Biophys Acta 1987; 906 (03) 405-436
  • 42 Varki A. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 1998; 8 (01) 34-40
  • 43 Gabius H-J, André S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochim Biophys Acta 2002; 1572 (2-3): 165-177
  • 44 Cummings RD. The repertoire of glycan determinants in the human glycome. Mol Biosyst 2009; 5 (10) 1087-1104
  • 45 Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 2012; 13 (07) 448-462
  • 46 Manning JC, Romero A, Habermann FA, García Caballero G, Kaltner H, Gabius HJ. Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147 (02) 199-222
  • 47 Kaltner H, García Caballero G, Ludwig A-K, Manning JC, Gabius HJ. From glycophenotyping by (plant) lectin histochemistry to defining functionality of glycans by pairing with endogenous lectins. Histochem Cell Biol 2018; 149 (06) 547-568
  • 48 Nakagawa H. Analytical aspects: analysis of protein-bound glycans. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 71-83
  • 49 Novotny MV, Alley Jr WR, Mann BF. Analytical glycobiology at high sensitivity: current approaches and directions. Glycoconj J 2013; 30 (02) 89-117
  • 50 Gabius H-J. How to crack the sugar code. Folia Biol (Praha) 2017; 63 (04) 121-131
  • 51 Oscarson S. The chemist's way to synthesize glycosides. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 31-51
  • 52 von der Lieth CW, Siebert HC, Kožár T. , et al. Lectin ligands: new insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins. Acta Anat (Basel) 1998; 161 (1-4): 91-109
  • 53 Tyler A. An auto-antibody concept of cell structure, growth and differentiation. Growth 1946; 10 (06) 7-19
  • 54 Weiss P. The problem of specificity in growth and development. Yale J Biol Med 1947; 19 (03) 235-278
  • 55 Fischer E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 1894; 27: 2985-2993
  • 56 Mitchell SW. Researches upon the venom of the rattlesnake: with an investigation of the anatomy and physiology of the organs concerned. Smithsonian Contributions to Knowledge; 1860: 89-90
  • 57 Flexner S, Noguchi H. Snake venom in relation to haemolysis, bacteriolysis and toxicity. J Exp Med 1902; 6 (03) 277-301
  • 58 Gartner TK, Stocker K, Williams DC. Thrombolectin: a lectin isolated from Bothrops atrox venom. FEBS Lett 1980; 117 (01) 13-16
  • 59 Kocourek J. Historical background. In: Liener IE, Sharon N, Goldstein IJ. , eds. The Lectins. Properties, Functions and Applications in Biology and Medicine. New York: Academic Press; 1986: 1-32
  • 60 Kilpatrick DC, Green C. Lectins as blood typing reagents. Adv Lectin Res 1992; 5: 51-94
  • 61 Gabius H-J. The history of lectinology. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 261-268
  • 62 Landsteiner K. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums in der Lymphe. Zbl Bakteriol Orig 1900; 27: 357-362
  • 63 Landsteiner K. Ueber Agglutinationserscheinungen normalen menschlichen Blutes. Wien Klin Wochenschr 1901; 46: 1132-1134
  • 64 Boyd WC. The proteins of immune reactions. In: Neurath H, Bailey K. , eds. The Proteins. New York: Academic Press; 1954: 756-844
  • 65 Boyd WC. The lectins: their present status. Vox Sang 1963; 8: 1-32
  • 66 Bird GWG. Lectins in immunohematology. Transfus Med Rev 1989; 3 (01) 55-62
  • 67 Nowell PC. Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 1960; 20: 462-466
  • 68 Landsteiner K, Raubitschek H. Ueber die Adsorption von Immunstoffen. V. Mitteilung. Biochem Z 1909; 15: 33-51
  • 69 Freier T, Fleischmann G, Rüdiger H. Affinity chromatography on immobilized hog gastric mucin and ovomucoid. A general method for isolation of lectins. Biol Chem Hoppe Seyler 1985; 366 (11) 1023-1028
  • 70 Watkins WM, Morgan WTJ. Neutralization of the anti-H agglutinin in eel serum by simple sugars. Nature 1952; 169 (4307): 825-826
  • 71 Watkins WM. A half century of blood-group antigen research: some personal recollections. Trends Glycosci Glycotechnol 1999; 11 (62) 391-411
  • 72 Barondes SH. Bifunctional properties of lectins: lectins redefined. Trends Biochem Sci 1988; 13 (12) 480-482
  • 73 Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D. From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 2011; 36 (06) 298-313
  • 74 Fujimoto Z, Tateno H, Hirabayashi J. Lectin structures: classification based on the 3-D structures. Methods Mol Biol 2014; 1200: 579-606
  • 75 Solís D, Bovin NV, Davis AP. , et al. A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 2015; 1850 (01) 186-235
  • 76 Gabius H-J, Springer WR, Barondes SH. Receptor for the cell binding site of discoidin I. Cell 1985; 42 (02) 449-456
  • 77 Gabius H-J. Animal lectins. Eur J Biochem 1997; 243 (03) 543-576
  • 78 Gready JN, Zelensky AN. Routes in lectin evolution: case study on the C-type lectin-like domains. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 329-346
  • 79 Drickamer K, Taylor ME. Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol 2015; 34: 26-34
  • 80 Mayer S, Raulf MK, Lepenies B. C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol 2017; 147 (02) 223-237
  • 81 Angata T, Brinkman-Van der Linden E. I-type lectins. Biochim Biophys Acta 2002; 1572 (2-3): 294-316
  • 82 Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14 (10) 653-666
  • 83 Hirabayashi J. , ed. Recent topics on galectins. Trends Glycosci Glycotechnol 1997; 9: 1-180
  • 84 Cooper DNW. Galectinomics: finding themes in complexity. Biochim Biophys Acta 2002; 1572 (2-3): 209-231
  • 85 Kaltner H, Toegel S, García Caballero G, Manning JC, Ledeen RW, Gabius HJ. Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 2017; 147 (02) 239-256
  • 86 García Caballero G, Manning JC, Ludwig A-K. , et al. Members of the galectin network with deviations from the canonical sequence signature. 1. Galectin-Related Inter-Fiber Protein (GRIFIN). Trends Glycosci Glycotechnol 2018; 30 (172) SE1-SE9
  • 87 Leffler H. Galectin history, some stories, and some outstanding questions. Trends Glycosci Glycotechnol 2018; 30 (172) SE129-SE135
  • 88 Kasai K-i. Galectins: quadruple-faced proteins. Trends Glycosci Glycotechnol 2018; 30 (172) SE221-SE223
  • 89 Kaltner H, Raschta A-S, Manning JC, Gabius HJ. Copy-number variation of functional galectin genes: studying animal galectin-7 (p53-induced gene 1 in man) and tandem-repeat-type galectins-4 and -9. Glycobiology 2013; 23 (10) 1152-1163
  • 90 Gabius H-J, Manning JC, Kopitz J, André S, Kaltner H. Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 2016; 73 (10) 1989-2016
  • 91 Iborra S, Sancho D. Signalling versatility following self and non-self sensing by myeloid C-type lectin receptors. Immunobiology 2015; 220 (02) 175-184
  • 92 Drummond RA, Brown GD. Signalling C-type lectins in antimicrobial immunity. PLoS Pathog 2013; 9 (07) e1003417
  • 93 Shiokawa M, Yamasaki S, Saijo S. C-type lectin receptors in anti-fungal immunity. Curr Opin Microbiol 2017; 40: 123-130
  • 94 Gabius H-J, Brehler R, Schauer A, Cramer F. Localization of endogenous lectins in normal human breast, benign breast lesions and mammary carcinomas. Virchows Arch B Cell Pathol Incl Mol Pathol 1986; 52 (02) 107-115 [Cell Pathol]
  • 95 Kaltner H, García Caballero G, Sinowatz F. , et al. Galectin-related protein: an integral member of the network of chicken galectins: 2. From expression profiling to its immunocyto- and histochemical localization and application as tool for ligand detection. Biochim Biophys Acta 2016; 1860 (10) 2298-2312
  • 96 Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius HJ. Network analysis of adhesion/growth-regulatory galectins and their binding sites in adult chicken retina and choroid. J Anat 2017; 231 (01) 23-37
  • 97 Zivicová V, Broz P, Fík Z. , et al. Genome-wide expression profiling (with focus on the galectin network) in tumor, transition zone and normal tissue of head and neck cancer: marked differences between individual patients and the site of specimen origin. Anticancer Res 2017; 37 (05) 2275-2288
  • 98 Manning JC, García Caballero G, Knospe C, Kaltner H, Gabius HJ. Three-step monitoring of glycan and galectin profiles in the anterior segment of the adult chicken eye. Ann Anat 2018; 217: 66-81
  • 99 Kopitz J, Xiao Q, Ludwig A-K. , et al. Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface. Angew Chem Int Ed Engl 2017; 56 (46) 14677-14681
  • 100 Xiao Q, Ludwig AK, Romanò C. , et al. Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Proc Natl Acad Sci U S A 2018; 115 (11) E2509-E2518
  • 101 Kopitz J, von Reitzenstein C, André S. , et al. Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 2001; 276 (38) 35917-35923
  • 102 Weinmann D, Schlangen K, André S. , et al. Galectin-3 induces a pro-degradative/inflammatory gene signature in human chondrocytes, teaming up with galectin-1 in osteoarthritis pathogenesis. Sci Rep 2016; 6: 39112
  • 103 Weinmann D, Kenn M, Schmidt S. , et al. Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and -3. Cell Mol Life Sci 2018; 75 (22) 4187-4205
  • 104 Gabius H-J, Roth J. An introduction to the sugar code. Histochem Cell Biol 2017; 147 (02) 111-117
  • 105 Schweizer A, Fransen JA, Bächi T, Ginsel L, Hauri HP. Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J Cell Biol 1988; 107 (05) 1643-1653
  • 106 Appenzeller C, Andersson H, Kappeler F, Hauri HP. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol 1999; 1 (06) 330-334
  • 107 Nichols WC, Seligsohn U, Zivelin A. , et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93 (01) 61-70
  • 108 Zhang B, Cunningham MA, Nichols WC. , et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 2003; 34 (02) 220-225
  • 109 Kawasaki N, Ichikawa Y, Matsuo I. , et al. The sugar-binding ability of ERGIC-53 is enhanced by its interaction with MCFD2. Blood 2008; 111 (04) 1972-1979
  • 110 Yoshida Y. F-box proteins that contain sugar-binding domains. Biosci Biotechnol Biochem 2007; 71 (11) 2623-2631
  • 111 Aebi M, Bernasconi R, Clerc S, Molinari M. N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 2010; 35 (02) 74-82
  • 112 Roth J, Zuber C. Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 2017; 147 (02) 269-284
  • 113 Springer T, Galfré G, Secher DS, Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol 1979; 9 (04) 301-306
  • 114 Josefsson EC, Gebhard HH, Stossel TP, Hartwig JH, Hoffmeister KM. The macrophage αMβ2 integrin αM lectin domain mediates the phagocytosis of chilled platelets. J Biol Chem 2005; 280 (18) 18025-18032
  • 115 Hoffmeister K, Falet H. Platelet glycoproteins as lectin in hematology. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 485-493
  • 116 Yamanoi K, Nakayama J. Reduced αGlcNAc glycosylation on gastric gland mucin is a biomarker of malignant potential for gastric cancer, Barrett's adenocarcinoma, and pancreatic cancer. Histochem Cell Biol 2018; 149 (06) 569-575
  • 117 Holla A, Skerra A. Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin. Protein Eng Des Sel 2011; 24 (09) 659-669
  • 118 Feinberg H, Rowntree TJ, Tan SL, Drickamer K, Weis WI, Taylor ME. Common polymorphisms in human langerin change specificity for glycan ligands. J Biol Chem 2013; 288 (52) 36762-36771
  • 119 Pipirou Z, Powlesland AS, Steffen I, Pöhlmann S, Taylor ME, Drickamer K. Mouse LSECtin as a model for a human Ebola virus receptor. Glycobiology 2011; 21 (06) 806-812
  • 120 Davis CW, Mattei LM, Nguyen HY, Ansarah-Sobrinho C, Doms RW, Pierson TC. The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 2006; 281 (48) 37183-37194
  • 121 Powlesland AS, Ward EM, Sadhu SK, Guo Y, Taylor ME, Drickamer K. Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. J Biol Chem 2006; 281 (29) 20440-20449
  • 122 Sodetz JM, Paulson JC, Pizzo SV, McKee PA. Carbohydrate on human factor VIII/von Willebrand factor. Impairment of function by removal of specific galactose residues. J Biol Chem 1978; 253 (20) 7202-7206
  • 123 Smedsrød B, Einarsson M, Pertoft H. Tissue plasminogen activator is endocytosed by mannose and galactose receptors of rat liver cells. Thromb Haemost 1988; 59 (03) 480-484
  • 124 Grozovsky R, Begonja AJ, Liu K. , et al. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med 2015; 21 (01) 47-54
  • 125 Grewal PK, Uchiyama S, Ditto D. , et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 2008; 14 (06) 648-655
  • 126 Ellies LG, Ditto D, Levy GG. , et al. Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc Natl Acad Sci U S A 2002; 99 (15) 10042-10047
  • 127 Unverzagt C, André S, Seifert J. , et al. Structure-activity profiles of complex biantennary glycans with core fucosylation and with/without additional α 2,3/α 2,6 sialylation: synthesis of neoglycoproteins and their properties in lectin assays, cell binding, and organ uptake. J Med Chem 2002; 45 (02) 478-491
  • 128 Park EI, Mi Y, Unverzagt C, Gabius HJ, Baenziger JU. The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acid α 2,6GalNAc. Proc Natl Acad Sci U S A 2005; 102 (47) 17125-17129
  • 129 Steirer LM, Park EI, Townsend RR, Baenziger JU. The asialoglycoprotein receptor regulates levels of plasma glycoproteins terminating with sialic acid α2,6-galactose. J Biol Chem 2009; 284 (06) 3777-3783
  • 130 Iwaki J, Hirabayashi J. Carbohydrate-binding specificity of human galectins: an overview by frontal affinity chromatography. Trends Glycosci Glycotechnol 2018; 30 (172) SE137-SE153
  • 131 Romaniuk MA, Tribulatti MV, Cattaneo V. , et al. Human platelets express and are activated by galectin-8. Biochem J 2010; 432 (03) 535-547
  • 132 Zappelli C, van der Zwaan C, Thijssen-Timmer DC, Mertens K, Meijer AB. Novel role for galectin-8 protein as mediator of coagulation factor V endocytosis by megakaryocytes. J Biol Chem 2012; 287 (11) 8327-8335
  • 133 Kamitori S. Three-dimensional structures of galectins. Trends Glycosci Glycotechnol 2018; 30 (172) SE41-SE50
  • 134 Pegon JN, Kurdi M, Casari C. , et al. Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica 2012; 97 (12) 1855-1863
  • 135 Krzeminski M, Singh T, André S. , et al. Human galectin-3 (Mac-2 antigen): defining molecular switches of affinity to natural glycoproteins, structural and dynamic aspects of glycan binding by flexible ligand docking and putative regulatory sequences in the proximal promoter region. Biochim Biophys Acta 2011; 1810 (02) 150-161
  • 136 Nonaka M, Ma BY, Murai R. , et al. Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol 2008; 180 (05) 3347-3356
  • 137 McEver RP. Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost 1991; 65 (03) 223-228
  • 138 Furie B, Furie BC, Flaumenhaft R. A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost 2001; 86 (01) 214-221
  • 139 Wu KK. TM hidden treasure: lectin-like domain. Blood 2012; 119 (05) 1103-1104
  • 140 Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 1983; 304 (5921): 30-34
  • 141 Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone Jr MA. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci U S A 1987; 84 (24) 9238-9242
  • 142 McEver RP, Martin MN. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem 1984; 259 (15) 9799-9804
  • 143 Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF. A platelet α-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 1985; 101 (03) 880-886
  • 144 Berman CL, Yeo EL, Wencel-Drake JD, Furie BC, Ginsberg MH, Furie B. A platelet α granule membrane protein that is associated with the plasma membrane after activation. Characterization and subcellular localization of platelet activation-dependent granule-external membrane protein. J Clin Invest 1986; 78 (01) 130-137
  • 145 McEver RP. GMP-140: a receptor for neutrophils and monocytes on activated platelets and endothelium. J Cell Biochem 1991; 45 (02) 156-161
  • 146 Geng JG, Bevilacqua MP, Moore KL. , et al. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 1990; 343 (6260): 757-760
  • 147 Rosen SD, Singer MS, Yednock TA, Stoolman LM. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science 1985; 228 (4702): 1005-1007
  • 148 Ali S, Jenkins Y, Kirkley M. , et al. Leukocyte extravasation: an immunoregulatory role for α-L-fucosidase?. J Immunol 2008; 181 (04) 2407-2413
  • 149 Imai Y, Lasky LA, Rosen SD. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature 1993; 361 (6412): 555-557
  • 150 Hooper LV, Manzella SM, Baenziger JU. The biology of sulfated oligosaccharides. In: Gabius H-J, Gabius S. , eds. Glycosciences: Status and Perspectives. London, UK and Weinheim, Germany: Chapman & Hall; 1997: 261-276
  • 151 Hemmerich S, Rosen SD. Carbohydrate sulfotransferases in lymphocyte homing. Glycobiology 2000; 10 (09) 849-856
  • 152 Fukuda M, Hiraoka N, Akama TO, Fukuda MN. Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. J Biol Chem 2001; 276 (51) 47747-47750
  • 153 Kawashima H. Two roles of mucin sulfation. Trends Glycosci Glycotechnol 2010; 22 (127) 211-225
  • 154 Baenziger JU. Glycoprotein hormone GalNAc-4-sulphotransferase. Biochem Soc Trans 2003; 31 (02) 326-330
  • 155 André S, Sanchez-Ruderisch H, Nakagawa H. , et al. Tumor suppressor p16INK4a–modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 2007; 274 (13) 3233-3256
  • 156 Amano M, Eriksson H, Manning JC. , et al. Tumour suppressor p16INK4a - anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J 2012; 279 (21) 4062-4080
  • 157 Amano M, Galvan M, He J, Baum LG. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J Biol Chem 2003; 278 (09) 7469-7475
  • 158 Sperandio M. Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J 2006; 273 (19) 4377-4389
  • 159 Marathe DD, Chandrasekaran EV, Lau JT, Matta KL, Neelamegham S. Systems-level studies of glycosyltransferase gene expression and enzyme activity that are associated with the selectin binding function of human leukocytes. FASEB J 2008; 22 (12) 4154-4167
  • 160 Lo CY, Antonopoulos A, Gupta R. , et al. Competition between core 2 GlcNAc-transferase and ST6GalNAc-transferase regulates the synthesis of the leukocyte selectin ligand on human P-selectin glycoprotein ligand-1. J Biol Chem 2013; 288 (20) 13974-13987
  • 161 Moreau R, Dausset J, Bernard J, Moullec J. Acquired hemolytic anemia with polyagglutinability of erythrocytes by a new factor present in normal blood [in French]. Bull Mem Soc Med Hop Paris 1957; 73 (20-21): 569-587
  • 162 Berger EG. Tn-syndrome. Biochim Biophys Acta 1999; 1455 (2-3): 255-268
  • 163 Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl 2011; 50 (08) 1770-1791
  • 164 Hounsell EF, Davies MJ, Renouf DV. O-linked protein glycosylation structure and function. Glycoconj J 1996; 13 (01) 19-26
  • 165 Dam TK, Gerken TA, Brewer CF. Thermodynamics of multivalent carbohydrate-lectin cross-linking interactions: importance of entropy in the bind and jump mechanism. Biochemistry 2009; 48 (18) 3822-3827
  • 166 Dam TK, Brewer CF. Multivalent lectin-carbohydrate interactions energetics and mechanisms of binding. Adv Carbohydr Chem Biochem 2010; 63: 139-164
  • 167 Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 2015; 1850 (01) 236-252
  • 168 Hurtado-Guerrero R. Recent structural and mechanistic insights into protein O-GalNAc glycosylation. Biochem Soc Trans 2016; 44 (01) 61-67
  • 169 Tenno M, Ohtsubo K, Hagen FK. , et al. Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol Cell Biol 2007; 27 (24) 8783-8796
  • 170 Iida S, Yamamoto K, Irimura T. Interaction of human macrophage C-type lectin with O-linked N-acetylgalactosamine residues on mucin glycopeptides. J Biol Chem 1999; 274 (16) 10697-10705
  • 171 Wu AM, Wu JH, Liu J-H. , et al. Effects of polyvalency of glycotopes and natural modifications of human blood group ABH/Lewis sugars at the Galβ1-terminated core saccharides on the binding of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N). Biochimie 2004; 86 (4-5): 317-326
  • 172 Wahrenbrock MG, Varki A. Multiple hepatic receptors cooperate to eliminate secretory mucins aberrantly entering the bloodstream: are circulating cancer mucins the “tip of the iceberg”?. Cancer Res 2006; 66 (04) 2433-2441
  • 173 Li Y, Fu J, Ling Y. , et al. Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc Natl Acad Sci U S A 2017; 114 (31) 8360-8365
  • 174 Mortezai N, Behnken HN, Kurze AK. , et al. Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-type lectin CLEC10A (CD301, MGL). Glycobiology 2013; 23 (07) 844-852
  • 175 Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 2013; 23 (02) 178-187
  • 176 Angata T, Tabuchi Y, Nakamura K, Nakamura M. Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 2007; 17 (08) 838-846
  • 177 Lu Q, Lu G, Qi J. , et al. PILRα and PILRβ have a siglec fold and provide the basis of binding to sialic acid. Proc Natl Acad Sci U S A 2014; 111 (22) 8221-8226
  • 178 Kuroki K, Wang J, Ose T. , et al. Structural basis for simultaneous recognition of an O-glycan and its attached peptide of mucin family by immune receptor PILRα. Proc Natl Acad Sci U S A 2014; 111 (24) 8877-8882
  • 179 Gabius H-J, Kaltner H, Kopitz J, André S. The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 2015; 40 (07) 360-376
  • 180 Rodriguez MC, Yegorova S, Pitteloud JP. , et al. Thermodynamic switch in binding of adhesion/growth regulatory human galectin-3 to tumor-associated TF antigen (CD176) and MUC1 glycopeptides. Biochemistry 2015; 54 (29) 4462-4474
  • 181 Artigas G, Hinou H, Garcia-Martin F, Gabius HJ, Nishimura SI. Synthetic mucin-like glycopeptides as versatile tools to measure effects of glycan structure/density/position on the interaction with adhesion/growth-regulatory galectins in arrays. Chem Asian J 2017; 12 (01) 159-167
  • 182 Crocker PR, Hartnell A, Munday J, Nath D. The potential role of sialoadhesin as a macrophage recognition molecule in health and disease. Glycoconj J 1997; 14 (05) 601-609
  • 183 Beatson R, Tajadura-Ortega V, Achkova D. , et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol 2016; 17 (11) 1273-1281
  • 184 Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC. Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 2003; 278 (33) 31007-31019
  • 185 Bannert N, Craig S, Farzan M. , et al. Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J Exp Med 2001; 194 (11) 1661-1673
  • 186 Frommhold D, Ludwig A, Bixel MG. , et al. Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation. J Exp Med 2008; 205 (06) 1435-1446
  • 187 Sperandio M. The expanding role of α2-3 sialylation for leukocyte trafficking in vivo. Ann N Y Acad Sci 2012; 1253: 201-205
  • 188 Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease--mucin-type O-glycans in cancer. Adv Cancer Res 2015; 126: 53-135
  • 189 Dimitroff CJ. Galectin-binding O-glycosylations as regulators of malignancy. Cancer Res 2015; 75 (16) 3195-3202
  • 190 Murugaesu N, Iravani M, van Weverwijk A. , et al. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov 2014; 4 (03) 304-317
  • 191 Reticker-Flynn NE, Bhatia SN. Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer Discov 2015; 5 (02) 168-181
  • 192 Galvan M, Tsuboi S, Fukuda M, Baum LG. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem 2000; 275 (22) 16730-16737
  • 193 Cabrera PV, Amano M, Mitoma J. , et al. Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 2006; 108 (07) 2399-2406
  • 194 Valenzuela HF, Pace KE, Cabrera PV. , et al. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res 2007; 67 (13) 6155-6162
  • 195 Tsuboi S, Sutoh M, Hatakeyama S. , et al. A novel strategy for evasion of NK cell immunity by tumours expressing core 2 O-glycans. EMBO J 2011; 30 (15) 3173-3185
  • 196 Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan chains of gangliosides: functional ligands for tissue lectins (siglecs/galectins). Prog Mol Biol Transl Sci 2018; 156: 289-324
  • 197 Bucior I, Burger MM. Fernàndez-Busquets. Carbohydrate-carbohydrate interactions. In: Gabius H-J. , ed. The Sugar Code. Fundamentals of Glycosciences. Weinheim, Germany: Wiley-VCH; 2009: 347-362
  • 198 Sanchez-Ruderisch H, Fischer C, Detjen KM. , et al. Tumor suppressor p16INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 2010; 277 (17) 3552-3563
  • 199 Ruiz FM, Gilles U, Ludwig A-K. , et al. Chicken GRIFIN: structural characterization in crystals and in solution. Biochimie 2018; 146: 127-138
  • 200 Kopitz J, Vértesy S, André S, Fiedler S, Schnölzer M, Gabius HJ. Human chimera-type galectin-3: defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation. Biochimie 2014; 104: 90-99
  • 201 Flores-Ibarra A, Vértesy S, Medrano FJ, Gabius HJ, Romero A. Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci Rep 2018; 8 (01) 9835
  • 202 Springer TA. Monoclonal antibody analysis of complex biological systems. Combination of cell hybridization and immunoadsorbents in a novel cascade procedure and its application to the macrophage cell surface. J Biol Chem 1981; 256 (08) 3833-3839
  • 203 Ho MK, Springer TA. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J Immunol 1982; 128 (03) 1221-1228
  • 204 Flotte TJ, Springer TA, Thorbecke GJ. Dendritic cell and macrophage staining by monoclonal antibodies in tissue sections and epidermal sheets. Am J Pathol 1983; 111 (01) 112-124
  • 205 Hughes RC. Mac-2: a versatile galactose-binding protein of mammalian tissues. Glycobiology 1994; 4 (01) 5-12
  • 206 Dawson H, André S, Karamitopoulou E, Zlobec I, Gabius HJ. The growing galectin network in colon cancer and clinical relevance of cytoplasmic galectin-3 reactivity. Anticancer Res 2013; 33 (08) 3053-3059
  • 207 Ahmad N, Gabius H-J, André S. , et al. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J Biol Chem 2004; 279 (12) 10841-10847
  • 208 Halimi H, Rigato A, Byrne D. , et al. Glycan dependence of Galectin-3 self-association properties. PLoS One 2014; 9 (11) e111836
  • 209 Ippel H, Miller MC, Vértesy S. , et al. Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology 2016; 26 (08) 888-903
  • 210 Lin YH, Qiu DC, Chang WH. , et al. The intrinsically disordered N-terminal domain of galectin-3 dynamically mediates multisite self-association of the protein through fuzzy interactions. J Biol Chem 2017; 292 (43) 17845-17856
  • 211 Linsley PS, Horn D, Marquardt H. , et al. Identification of a novel serum protein secreted by lung carcinoma cells. Biochemistry 1986; 25 (10) 2978-2986
  • 212 Rosenberg I, Cherayil BJ, Isselbacher KJ, Pillai S. Mac-2-binding glycoproteins. Putative ligands for a cytosolic β-galactoside lectin. J Biol Chem 1991; 266 (28) 18731-18736
  • 213 Sasaki T, Brakebusch C, Engel J, Timpl R. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds β1 integrins, collagens and fibronectin. EMBO J 1998; 17 (06) 1606-1613
  • 214 DeRoo EP, Wrobleski SK, Shea EM. , et al. The role of galectin-3 and galectin-3-binding protein in venous thrombosis. Blood 2015; 125 (11) 1813-1821
  • 215 Blostein M, Cuerquis J, Galipeau J. Galectin 3-binding protein is a potential contaminant of recombinantly produced factor IX. Haemophilia 2007; 13 (06) 701-706
  • 216 Papaspyridonos M, McNeill E, de Bono JP. , et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol 2008; 28 (03) 433-440
  • 217 Filer A, Bik M, Parsonage GN. , et al. Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Rheum 2009; 60 (06) 1604-1614
  • 218 Miller MC, Ludwig A-K, Wichapong K. , et al. Adhesion/growth-regulatory galectins tested in combination: evidence for formation of hybrids as heterodimers. Biochem J 2018; 475 (05) 1003-1018
  • 219 Vértesy S, Michalak M, Miller MC. , et al. Structural significance of galectin design: impairment of homodimer stability by linker insertion and partial reversion by ligand presence. Protein Eng Des Sel 2015; 28 (07) 199-210
  • 220 Sharon N. Glycoproteins now and then: a personal account. Acta Anat (Basel) 1998; 161 (1-4): 7-17
  • 221 Damjanov I. Lectin cytochemistry and histochemistry. Lab Invest 1987; 57 (01) 5-20
  • 222 Spicer SS, Schulte BA. Detection and differentiation of glycoconjugates in various cell types by lectin histochemistry. Basic Appl Histochem 1988; 32 (03) 307-320
  • 223 Gabius H-J, Wosgien B, Hendrys M, Bardosi A. Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 1991; 95 (03) 269-277
  • 224 Spicer SS, Schulte BA. Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem 1992; 40 (01) 1-38
  • 225 Danguy A, Akif F, Pajak B, Gabius HJ. Contribution of carbohydrate histochemistry to glycobiology. Histol Histopathol 1994; 9 (01) 155-171
  • 226 Roth J. Lectins for histochemical demonstration of glycans. Histochem Cell Biol 2011; 136 (02) 117-130
  • 227 Roy R, Cao Y, Kaltner H. , et al. Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 2017; 147 (02) 285-301
  • 228 Gabius H-J. Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit Rev Immunol 2006; 26 (01) 43-79
  • 229 Randi AM, Smith KE, Castaman G. von Willebrand factor regulation of blood vessel formation. Blood 2018; 132 (02) 132-140
  • 230 Degn SE, Jensenius JC, Bjerre M. The lectin pathway and its implications in coagulation, infections and auto-immunity. Curr Opin Organ Transplant 2011; 16 (01) 21-27
  • 231 Larsen JB, Hvas CL, Hvas AM. The lectin pathway in thrombotic conditions-a systematic review. Thromb Haemost 2018; 118 (07) 1141-1166