Adipositas - Ursachen, Folgeerkrankungen, Therapie 2018; 12(04): 189-192
DOI: 10.1055/s-0038-1676676
Übersichtsarbeit
Georg Thieme Verlag KG Stuttgart · New York

Epigenetik der Adipositas: Ergebnisse aus Mausstudien

Epigenetics of obesity: Results from mouse studies
S. Saussenthaler
1   Abteilung Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung, Potsdam-Rehbrücke
,
A. Schürmann
1   Abteilung Experimentelle Diabetologie, Deutsches Institut für Ernährungsforschung, Potsdam-Rehbrücke
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Dezember 2018 (online)

Zusammenfassung

Vor dem Hintergrund der steigenden Prävalenz von Adipositas und den damit einhergehenden Begleiterkrankungen (Nicht-alkoholische Fettleber, Typ-2-Diabetes u.a.) wird es immer wichtiger, neue Präventions- und Behandlungsmöglichkeiten aufzuzeigen, die eine personalisierte Therapie ermöglichen. Die Entdeckung von Veränderungen in bestimmten Signalwegen, die durch Adipositas ausgelöst werden, verbessern nicht nur unsere Kenntnisse über die Pathophysiologie, sie können zudem auf neue pharmakologische Behandlungsstrategien hinweisen. Seit mehreren Jahren befasst sich die Forschung auch damit, die Beteiligung epigenetischer Mechanismen bei der Entstehung der Adipositas zu klären. Experimentelle Studien an Mäusen führten zu der Erkenntnis, dass der Ernährungszustand der Eltern epigenetisch vererbt wird und so die Prävalenz der Nachkommen an Übergewicht und Insulinresistenz zu erkranken beeinflusst. Des Weiteren wurden interindividuelle Varianzen der DNA-Methylierung identifiziert, die das Risiko an Übergewicht und einer Fettleber zu leiden erhöhten. Diese Erkenntnisse können einerseits genutzt werden, um epigenetische Biomarker zu identifizieren, welche das individuelle Risiko besser bewerten können, anderseits um pharmakologische Therapien personalisierter einzusetzen.

Summary

In view of the fact that prevalence of obesity and its co-morbidities (e.g. NAFLD and type 2 diabetes) are increasing, it becomes more and more important to evaluate new prevention and treatment strategies and to facilitate personalized therapy. The identification of alterations within particular pathways affected in obesity improves our knowledge of pathophysiology and can point to novel pharmacological treatment strategies. In recent years, research on epigenetic mechanisms involved in weight regulation came in focus. Experimental studies have been able to show that the nutritional status of parental mice is epigenetically inherited to the next generation and alters prevalence for obesity and insulin resistance. Furthermore, interindividual variations in DNA methylation, which increase the prevalence for obesity and fatty liver, were identified. In the future, the detection of epigenetic biomarkers could improve individual risk assessment for obesity and comorbidities as well as personalized pharmacological therapy.

 
  • Literatur

  • 1 Guh DP. et al. The incidence of co-morbidities related to obesity and overweight[g: A systematic review and meta-analysis. BMC Public Health 09 (88) 1-20 2009;
  • 2 Whitlock G. et al. Body-mass index and cause-specific mortality in 900 000 adults[g: collaborative analyses of 57 prospective. Lancet 373: 1083-1096 2009;
  • 3 Farooqi S, O’Rahilly S. Monogenic Obesity in Humans. Annu. Rev. Med 56: 443-56 2005;
  • 4 Hinney A, Vogel CIG, Hebebrand J. From monogenic to polygenic obesity: recent advances. Eur. Child Adolesc. Psychiatry 19: 297-310 2010;
  • 5 Yazdi FT, Clee SM, Meyre D. Obesity genetics in mouse and human: back and forth, and back again. PeerJ 03: e856 2015;
  • 6 Locke AE. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518: 197-206 2015;
  • 7 Manolio T A. et al. Finding the missing heritability of complex diseases. Nature 461: 747-753 2009;
  • 8 Wheeler E. et al. letters Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet 45: 513-517 2013;
  • 9 Zhao W. et al. Copy Number Variations Associated With Obesity-Related Traits in African Americans: A Joint Analysis Between GENOA and HyperGEN. Obesity 20: 2431-2437 2009;
  • 10 Wang K. et al. Large Copy-Number Variations Are Enriched in Cases With Moderate to Extreme Obesity. Diabetes. 59. 2010
  • 11 Jarick I. et al. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum. Mol Genet 20: 840-852 2011;
  • 12 De R, Hu T, Moore JH, Gilbert-Diamond D. Characterizing gene-gene interactions in a statistical epistasis network of twelve candidate genes for obesity. BioData Min 8 45: 1-16 2015;
  • 13 Huang T, Hu FB. Gene-environment interactions and obesity: recent developments and future directions. BMC Med. Genomics. 8. 2015
  • 14 Herrera B M, Keildson S, Lindgren CM. Maturitas Genetics and epigenetics of obesity. Maturitas 69: 41-49 2011;
  • 15 Van Dijk SJ. et al. Epigenetics and human obesity. 39: 85-97 2015;
  • 16 Barrero MJ, Boue S, Izpisua Belmonte JC. Perspective Epigenetic Mechanisms that Regulate Cell Identity. Cell Stem Cell 07: 565-570 2010;
  • 17 Heard E, Martienssen R A. Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell 157: 95-109 2014;
  • 18 Jin B, Li Y, Robertson KD. DNA Methylation: Superior or Subordinate in the Epigenetic Hierarchy?. Genes Cancer 02: 607-617 2011;
  • 19 Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 38: 23-38 2012;
  • 20 Jones P A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13: 484-492 2012;
  • 21 Barres R, Zierath J R. DNA methylation in metabolic disorders 1 – 4. Am J Clin Nutr 93: 897-900 2011;
  • 22 Guibert S, Forné T, Weber M. Dynamic regulation of DNA methylation during mammalian development. Epigenomics 01: 81-98 2009;
  • 23 Miltenberger R J, Mynatt R L, Wilkinson J E, Woychik R P. The Role of the agouti Gene in the Yellow Obese Syndrome. J Nutr 127: 1902-1907 1997;
  • 24 Dolinoy D C. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev 66: 1-8 2010;
  • 25 Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal Genistein Alters Coat Color and Protects Avy Mouse Offspring from Obesity by Modifying the Fetal Epigenome. Environ. Health Perspect 114: 567-572 2006;
  • 26 Harris RA, Nagy-szakal D, Kellermayer R. Human metastable epiallele candidates link to common disorders. Epigenetics 08: 157-163 2013;
  • 27 Dalgaard K. et al. Trim28 Haploinsufficiency Triggers Bi-stable Epigenetic Obesity. Cell 164: 353-364 2016;
  • 28 Huypens P. et al. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat. Genet 48: 497-500 2016;
  • 29 Lewitt MS, Dent MS, Hall K. The Insulin-Like Growth Factor System in Obesity, Insulin Resistance and Type 2 Diabetes Mellitus. J. Clin. Med 03: 1561-1574 2014;
  • 30 Hoeflich A. et al. Overexpression of Insulin-Like Growth Factor-Binding Protein-2 in Transgenic Mice Reduces Postnatal Body. Endocrinology 140: 5488-5496 1999;
  • 31 Kammel A. et al. Early hypermethylation of hepatic Igfbp2 results in its reduced expression preceding fatty liver in mice. Hum. Mol. Genet 25: 2588-2599 2016;
  • 32 Stefan N, Häring H. The Metabolically Benign and Malignant Fatty Liver. Diabetes 60: 2011-2017 2011;
  • 33 Miyazaki M. et al. Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol. Med. Rep 05: 729-733 2011;
  • 34 Baumeier C. et al. Hepatic DPP4 DNA Methylation Associates With Fatty Liver. Diabetes 66: 25-35 2017;
  • 35 Baumeier C. et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol Metab 06: 1254-1263 2017;