J Pediatr Intensive Care 2019; 08(01): 032-041
DOI: 10.1055/s-0038-1676133
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Sepsis and Pediatric Acute Respiratory Distress Syndrome

Nadir Yehya
1   Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States
,
Neal J. Thomas
2   Division of Pediatric Critical Care Medicine, Department of Pediatrics and Public Health Science, Penn State Hershey Children's Hospital, Hershey, Pennsylvania, United States
› Author Affiliations
Further Information

Publication History

15 September 2018

17 October 2018

Publication Date:
10 December 2018 (online)

Abstract

The epidemiology of the acute respiratory distress syndrome (ARDS) in pediatric sepsis is poorly defined. With significant data extrapolated from adult studies in sepsis and ARDS, sometimes with uncertain applicability, better pediatric-specific guidelines and dedicated investigations are warranted. The recent publication of a consensus definition for pediatric ARDS (PARDS) is the first step in addressing this knowledge gap. The aim of this review is to frame our current understanding of PARDS as it relates to pediatric sepsis, encompassing epidemiology, pathophysiology, and management. We argue that addressing the role of PARDS in pediatric sepsis requires significant attention to details with respect to how PARDS and sepsis are defined to accurately describe their epidemiology, natural history, and outcomes. Finally, we highlight certain aspects of PARDS management as they relate to the septic child and offer suggestion for future directions in this field.

 
  • References

  • 1 Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2 (7511): 319-323
  • 2 Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis 1988; 138 (03) 720-723
  • 3 Bernard GR, Artigas A, Brigham KL. , et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149 (3, Pt 1): 818-824
  • 4 Taylor RW, Zimmerman JL, Dellinger RP. , et al; Inhaled Nitric Oxide in ARDS Study Group. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 2004; 291 (13) 1603-1609
  • 5 Zeiher BG, Artigas A, Vincent JL. , et al; STRIVE Study Group. Neutrophil elastase inhibition in acute lung injury: results of the STRIVE study. Crit Care Med 2004; 32 (08) 1695-1702
  • 6 Steinberg KP, Hudson LD, Goodman RB. , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354 (16) 1671-1684
  • 7 Matthay MA, Brower RG, Carson S. , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Randomized, placebo-controlled clinical trial of an aerosolized β2-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 2011; 184 (05) 561-568
  • 8 Gao Smith F, Perkins GD, Gates S. , et al; BALTI-2 study investigators. Effect of intravenous β-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet 2012; 379 (9812): 229-235
  • 9 McAuley DF, Laffey JG, O'Kane CM. , et al; HARP-2 Investigators; Irish Critical Care Trials Group. Simvastatin in the acute respiratory distress syndrome. N Engl J Med 2014; 371 (18) 1695-1703
  • 10 Truwit JD, Bernard GR, Steingrub J, et al; National Heart, Lung, and Blood Institute ARDS Clinical Trial Network. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 2014; 370 (23) 2191-2200
  • 11 Willson DF, Truwit JD, Conaway MR, Traul CS, Egan EE. The Adult Calfactant in Acute Respiratory Distress Syndrome Trial. Chest 2015; 148 (02) 356-364
  • 12 The ARDS Network. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2000; 283 (15) 1995-2002
  • 13 Anzueto A, Baughman RP, Guntupalli KK. , et al; Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. N Engl J Med 1996; 334 (22) 1417-1421
  • 14 Spragg RG, Lewis JF, Walmrath HD. , et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med 2004; 351 (09) 884-892
  • 15 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. ; Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 16 Wiedemann HP, Wheeler AP, Bernard GR. , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354 (24) 2564-2575
  • 17 Ranieri VM, Rubenfeld GD, Thompson BT. , et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
  • 18 Papazian L, Forel JM, Gacouin A. , et al; ACURASYS Study Investigators. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010; 363 (12) 1107-1116
  • 19 Guérin C, Reignier J, Richard JC. , et al; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368 (23) 2159-2168
  • 20 Trachsel D, McCrindle BW, Nakagawa S, Bohn D. Oxygenation index predicts outcome in children with acute hypoxemic respiratory failure. Am J Respir Crit Care Med 2005; 172 (02) 206-211
  • 21 Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med 2005; 171 (09) 995-1001
  • 22 Erickson S, Schibler A, Numa A. , et al; Paediatric Study Group; Australian and New Zealand Intensive Care Society. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med 2007; 8 (04) 317-323
  • 23 López-Fernández Y, Azagra AM, de la Oliva P. , et al; Pediatric Acute Lung Injury Epidemiology and Natural History (PED-ALIEN) Network. Pediatric Acute Lung Injury Epidemiology and Natural History study: Incidence and outcome of the acute respiratory distress syndrome in children. Crit Care Med 2012; 40 (12) 3238-3245
  • 24 Yehya N, Keim G, Thomas NJ. Subtypes of pediatric acute respiratory distress syndrome have different predictors of mortality. Intensive Care Med 2018; 44 (08) 1230-1239
  • 25 Himebauch AS, Yehya N, Wang Y. , et al. Early Right Ventricular Systolic Dysfunction and Pulmonary Hypertension Are Associated With Worse Outcomes in Pediatric Acute Respiratory Distress Syndrome. Crit Care Med 2018; 46 (11) e1055-e1062
  • 26 Thomas NJ, Shaffer ML, Willson DF, Shih MC, Curley MA. Defining acute lung disease in children with the oxygenation saturation index. Pediatr Crit Care Med 2010; 11 (01) 12-17
  • 27 Khemani RG, Thomas NJ, Venkatachalam V. , et al; Pediatric Acute Lung Injury and Sepsis Network Investigators (PALISI). Comparison of SpO2 to PaO2 based markers of lung disease severity for children with acute lung injury. Crit Care Med 2012; 40 (04) 1309-1316
  • 28 Wong JJ, Loh TF, Testoni D, Yeo JG, Mok YH, Lee JH. Epidemiology of pediatric acute respiratory distress syndrome in singapore: risk factors and predictive respiratory indices for mortality. Front Pediatr 2014; 2: 78
  • 29 Khemani RG, Rubin S, Belani S. , et al. Pulse oximetry vs. PaO2 metrics in mechanically ventilated children: Berlin definition of ARDS and mortality risk. Intensive Care Med 2015; 41 (01) 94-102
  • 30 Spicer AC, Calfee CS, Zinter MS. , et al. A simple and robust bedside model for mortality risk in pediatric patients with acute respiratory distress syndrome. Pediatr Crit Care Med 2016; 17 (10) 907-916
  • 31 Parvathaneni K, Belani S, Leung D, Newth CJ, Khemani RG. Evaluating the performance of the Pediatric Acute Lung Injury Consensus Conference definition of acute respiratory distress syndrome. Pediatr Crit Care Med 2017; 18 (01) 17-25
  • 32 Dowell JC, Parvathaneni K, Thomas NJ, Khemani RG, Yehya N. Epidemiology of cause of death in pediatric acute respiratory distress syndrome. Crit Care Med 2018; 46 (11) 1811-1819
  • 33 Thomas NJ, Jouvet P, Willson D. Acute lung injury in children--kids really aren't just “little adults”. Pediatr Crit Care Med 2013; 14 (04) 429-432
  • 34 Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015; 16 (05) 428-439
  • 35 Yehya N, Servaes S, Thomas NJ. Characterizing degree of lung injury in pediatric acute respiratory distress syndrome. Crit Care Med 2015; 43 (05) 937-946
  • 36 Weiss SL, Fitzgerald JC, Maffei FA. , et al; SPROUT Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators Network. Discordant identification of pediatric severe sepsis by research and clinical definitions in the SPROUT international point prevalence study. Crit Care 2015; 19: 325
  • 37 Balamuth F, Weiss SL, Neuman MI. , et al. Pediatric severe sepsis in U.S. children's hospitals. Pediatr Crit Care Med 2014; 15 (09) 798-805
  • 38 Nadel S, Goldstein B, Williams MD. , et al; REsearching severe Sepsis and Organ dysfunction in children: a gLobal perspective (RESOLVE) study group. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet 2007; 369 (9564): 836-843
  • 39 Goldstein B, Giroir B, Randolph A. ; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6 (01) 2-8
  • 40 Weiss SL, Fitzgerald JC, Pappachan J. , et al; Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191 (10) 1147-1157
  • 41 Leligdowicz A, Dodek PM, Norena M, Wong H, Kumar A, Kumar A. ; Co-operative Antimicrobial Therapy of Septic Shock Database Research Group. Association between source of infection and hospital mortality in patients who have septic shock. Am J Respir Crit Care Med 2014; 189 (10) 1204-1213
  • 42 Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD. Incidence and outcomes of pediatric acute lung injury. Pediatrics 2009; 124 (01) 87-95
  • 43 Zinter MS, Spicer A, Orwoll BO. , et al. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality. Am J Physiol Lung Cell Mol Physiol 2016; 310 (03) L224-L231
  • 44 Valentine SL, Sapru A, Higgerson RA. , et al; Pediatric Acute Lung Injury and Sepsis Investigator's (PALISI) Network; Acute Respiratory Distress Syndrome Clinical Research Network (ARDSNet). Fluid balance in critically ill children with acute lung injury. Crit Care Med 2012; 40 (10) 2883-2889
  • 45 De Luca D, Piastra M, Chidini G. , et al; Respiratory Section of the European Society for Pediatric Neonatal Intensive Care (ESPNIC). The use of the Berlin definition for acute respiratory distress syndrome during infancy and early childhood: multicenter evaluation and expert consensus. Intensive Care Med 2013; 39 (12) 2083-2091
  • 46 Khemani RG, Conti D, Alonzo TA, Bart III RD, Newth CJ. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med 2009; 35 (08) 1428-1437
  • 47 Willson DF, Thomas NJ, Tamburro R. , et al; Pediatric Acute Lung and Sepsis Investigators Network. The relationship of fluid administration to outcome in the pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med 2013; 14 (07) 666-672
  • 48 Flori HR, Church G, Liu KD, Gildengorin G, Matthay MA. Positive fluid balance is associated with higher mortality and prolonged mechanical ventilation in pediatric patients with acute lung injury. Crit Care Res Pract 2011; 2011: 854142
  • 49 Calfee CS, Janz DR, Bernard GR. , et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest 2015; 147 (06) 1539-1548
  • 50 Thille AW, Esteban A, Fernández-Segoviano P. , et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med 2013; 187 (07) 761-767
  • 51 Müller-Redetzky HC, Will D, Hellwig K. , et al. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. Crit Care 2014; 18 (02) R73
  • 52 Fattahi F, Grailer JJ, Jajou L, Zetoune FS, Andjelkovic AV, Ward PA. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis. Immunol Res 2015; 61 (03) 177-186
  • 53 Fuchs TA, Abed U, Goosmann C. , et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (02) 231-241
  • 54 Clark SR, Ma AC, Tavener SA. , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 55 Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin?. J Cell Biol 2012; 198 (05) 773-783
  • 56 Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123 (18) 2768-2776
  • 57 Brinkmann V, Reichard U, Goosmann C. , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663): 1532-1535
  • 58 Massberg S, Grahl L, von Bruehl ML. , et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 59 Xu J, Zhang X, Pelayo R. , et al. Extracellular histones are major mediators of death in sepsis. Nat Med 2009; 15 (11) 1318-1321
  • 60 Abrams ST, Zhang N, Manson J. , et al. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 2013; 187 (02) 160-169
  • 61 Bosmann M, Grailer JJ, Ruemmler R. , et al. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury. FASEB J 2013; 27 (12) 5010-5021
  • 62 Ekaney ML, Otto GP, Sossdorf M. , et al. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Crit Care 2014; 18 (05) 543
  • 63 Grailer JJ, Ward PA. Lung inflammation and damage induced by extracellular histones. Inflamm Cell Signal 2014; 1 (04) 1
  • 64 Xiang M, Fan J. Pattern recognition receptor-dependent mechanisms of acute lung injury. Mol Med 2010; 16 (1,2): 69-82
  • 65 Achouiti A, van der Meer AJ, Florquin S. , et al. High-mobility group box 1 and the receptor for advanced glycation end products contribute to lung injury during Staphylococcus aureus pneumonia. Crit Care 2013; 17 (06) R296
  • 66 Chouteau JM, Obiako B, Gorodnya OM. , et al. Mitochondrial DNA integrity may be a determinant of endothelial barrier properties in oxidant-challenged rat lungs. Am J Physiol Lung Cell Mol Physiol 2011; 301 (06) L892-L898
  • 67 Lee YL, King MB, Gonzalez RP. , et al. Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. J Surg Res 2014; 191 (02) 286-289
  • 68 Nakahira K, Kyung SY, Rogers AJ. , et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 2013; 10 (12) e1001577 , discussion e1001577
  • 69 Simmons JD, Lee YL, Mulekar S. , et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg 2013; 258 (04) 591-596 , discussion 596–598
  • 70 Krychtiuk KA, Ruhittel S, Hohensinner PJ. , et al. Mitochondrial DNA and toll-like receptor-9 are associated with mortality in critically ill patients. Crit Care Med 2015; 43 (12) 2633-2641
  • 71 Maitland K, Kiguli S, Opoka RO. , et al; FEAST Trial Group. Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011; 364 (26) 2483-2495
  • 72 Piastra M, De Luca D, Pietrini D. , et al. Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med 2009; 35 (08) 1420-1427
  • 73 Piastra M, De Luca D, Marzano L. , et al. The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med 2011; 37 (09) 1510-1516
  • 74 Mayordomo-Colunga J, Pons M, López Y. , et al. Predicting non-invasive ventilation failure in children from the SpO2/FiO2 (SF) ratio. Intensive Care Med 2013; 39 (06) 1095-1103
  • 75 Bernet V, Hug MI, Frey B. Predictive factors for the success of noninvasive mask ventilation in infants and children with acute respiratory failure. Pediatr Crit Care Med 2005; 6 (06) 660-664
  • 76 Pancera CF, Hayashi M, Fregnani JH, Negri EM, Deheinzelin D, de Camargo B. Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol 2008; 30 (07) 533-538
  • 77 Dohna-Schwake C, Stehling F, Tschiedel E, Wallot M, Mellies U. Non-invasive ventilation on a pediatric intensive care unit: feasibility, efficacy, and predictors of success. Pediatr Pulmonol 2011; 46 (11) 1114-1120
  • 78 Yañez LJ, Yunge M, Emilfork M. , et al. A prospective, randomized, controlled trial of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med 2008; 9 (05) 484-489
  • 79 Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2016; 315 (22) 2435-2441
  • 80 Hutchings FA, Hilliard TN, Davis PJ. Heated humidified high-flow nasal cannula therapy in children. Arch Dis Child 2015; 100 (06) 571-575
  • 81 Essouri S, Carroll C. ; Pediatric Acute Lung Injury Consensus Conference Group. Noninvasive support and ventilation for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015; 16 (05) (Suppl. 01) S102-S110
  • 82 Messika J, Ben Ahmed K, Gaudry S. , et al. Use of high-flow nasal cannula oxygen therapy in subjects with ards: a 1-year observational study. Respir Care 2015; 60 (02) 162-169
  • 83 Arnold JH, Hanson JH, Toro-Figuero LO, Gutiérrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 1994; 22 (10) 1530-1539
  • 84 Curley MA, Hibberd PL, Fineman LD. , et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA 2005; 294 (02) 229-237
  • 85 Willson DF, Thomas NJ, Markovitz BP. , et al; Pediatric Acute Lung Injury and Sepsis Investigators. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA 2005; 293 (04) 470-476
  • 86 Willson DF, Thomas NJ, Tamburro R. , et al; Pediatric Acute Lung and Sepsis Investigators Network. Pediatric calfactant in acute respiratory distress syndrome trial. Pediatr Crit Care Med 2013; 14 (07) 657-665
  • 87 Amato MB, Meade MO, Slutsky AS. , et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 88 de Jager P, Burgerhof JG, van Heerde M, Albers MJ, Markhorst DG, Kneyber MC. Tidal volume and mortality in mechanically ventilated children: a systematic review and meta-analysis of observational studies*. Crit Care Med 2014; 42 (12) 2461-2472
  • 89 Randolph AG. Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med 2009; 37 (08) 2448-2454
  • 90 Santschi M, Jouvet P, Leclerc F. , et al; PALIVE Investigators; Pediatric Acute Lung Injury and Sepsis Investigators Network (PALISI); European Society of Pediatric and Neonatal Intensive Care (ESPNIC). Acute lung injury in children: therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med 2010; 11 (06) 681-689
  • 91 Young D, Lamb SE, Shah S. , et al; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 2013; 368 (09) 806-813
  • 92 Ferguson ND, Cook DJ, Guyatt GH. , et al; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 2013; 368 (09) 795-805
  • 93 Rettig JS, Smallwood CD, Walsh BK. , et al. High-frequency oscillatory ventilation in pediatric acute lung injury: a multicenter international experience. Crit Care Med 2015; 43 (12) 2660-2667
  • 94 Zabrocki LA, Brogan TV, Statler KD, Poss WB, Rollins MD, Bratton SL. Extracorporeal membrane oxygenation for pediatric respiratory failure: Survival and predictors of mortality. Crit Care Med 2011; 39 (02) 364-370
  • 95 Minneci PC, Kilbaugh TJ, Chandler HK, Behar BJ, Localio AR, Deans KJ. Factors associated with mortality in pediatric patients requiring extracorporeal life support for severe pneumonia. Pediatr Crit Care Med 2013; 14 (01) e26-e33
  • 96 Gow KW, Wulkan ML, Heiss KF. , et al. Extracorporeal membrane oxygenation for support of children after hematopoietic stem cell transplantation: the extracorporeal life support organization experience. J Pediatr Surg 2006; 41 (04) 662-667
  • 97 Gupta M, Shanley TP, Moler FW. Extracorporeal life support for severe respiratory failure in children with immune compromised conditions. Pediatr Crit Care Med 2008; 9 (04) 380-385
  • 98 Brogan TV, Zabrocki L, Thiagarajan RR, Rycus PT, Bratton SL. Prolonged extracorporeal membrane oxygenation for children with respiratory failure. Pediatr Crit Care Med 2012; 13 (04) e249-e254
  • 99 MacLaren G, Butt W, Best D, Donath S. Central extracorporeal membrane oxygenation for refractory pediatric septic shock. Pediatr Crit Care Med 2011; 12 (02) 133-136
  • 100 Combes A, Hajage D, Capellier G. , et al; EOLIA Trial Group, REVA, and ECMONet. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 2018; 378 (21) 1965-1975
  • 101 Freeman CL, Bennett TD, Casper TC. , et al. Pediatric and neonatal extracorporeal membrane oxygenation: does center volume impact mortality?*. Crit Care Med 2014; 42 (03) 512-519
  • 102 Annane D, Sébille V, Charpentier C. , et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002; 288 (07) 862-871
  • 103 Sprung CL, Annane D, Keh D. , et al; CORTICUS Study Group. Hydrocortisone therapy for patients with septic shock. N Engl J Med 2008; 358 (02) 111-124
  • 104 Zimmerman JJ, Williams MD. Adjunctive corticosteroid therapy in pediatric severe sepsis: observations from the RESOLVE study. Pediatr Crit Care Med 2011; 12 (01) 2-8
  • 105 Wong HR, Cvijanovich NZ, Anas N. , et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med 2015; 191 (03) 309-315
  • 106 Markovitz BP, Goodman DM, Watson RS, Bertoch D, Zimmerman J. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: what is the role of steroids?. Pediatr Crit Care Med 2005; 6 (03) 270-274
  • 107 Atkinson SJ, Cvijanovich NZ, Thomas NJ. , et al. Corticosteroids and pediatric septic shock outcomes: a risk stratified analysis. PLoS One 2014; 9 (11) e112702
  • 108 Menon K, McNally JD, Choong K. , et al; Canadian Critical Care Trials Group STRIPES Investigators. A cohort study of pediatric shock: frequency of corticosteriod use and association with clinical outcomes. Shock 2015; 44 (05) 402-409
  • 109 Yehya N, Servaes S, Thomas NJ, Nadkarni VM, Srinivasan V. Corticosteroid exposure in pediatric acute respiratory distress syndrome. Intensive Care Med 2015; 41 (09) 1658-1666
  • 110 Drago BB, Kimura D, Rovnaghi CR. , et al. Double-blind, placebo-controlled pilot randomized trial of methylprednisolone infusion in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med 2015; 16 (03) e74-e81
  • 111 Yehya N, Vogiatzi MG, Thomas NJ, Srinivasan V. Cortisol correlates with severity of illness and poorly reflects adrenal function in pediatric acute respiratory distress syndrome. J Pediatr 2016; 177: 212-218.e1
  • 112 Boonen E, Vervenne H, Meersseman P. , et al. Reduced cortisol metabolism during critical illness. N Engl J Med 2013; 368 (16) 1477-1488
  • 113 Meduri GU, Headley AS, Golden E. , et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 1998; 280 (02) 159-165