Semin Liver Dis 2019; 39(01): 070-077
DOI: 10.1055/s-0038-1676122
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Extracellular Vesicles in Liver Diseases: Diagnostic, Prognostic, and Therapeutic Application

Sabine K. Urban*
1   Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
,
Tudor Mocan*
2   Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
,
Hanna Sänger
1   Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
,
Veronika Lukacs-Kornek
3   Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
,
Miroslaw Kornek
4   Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany
5   Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
17 January 2019 (online)

Abstract

Extracellular vesicles, comprising exosomes, microvesicles, and apoptotic bodies, represent an emerging field in disease diagnostics and prognosis. They can be isolated from peripheral blood of patients as well as from other body fluids and can therefore be considered a minimally invasive liquid biopsy screening tool. Especially their surface antigen composition can reveal information about disease backgrounds. For several liver diseases, including fatal hepatocellular and cholangiocellular carcinoma as well as other nonmalignant liver disorders such as nonalcoholic fatty liver disease, alcoholic hepatitis, or acute liver failure, it has been shown that extracellular vesicle (EV) surface profiling can be useful for disease diagnosis and prognosis. This review focuses on latest advances in these areas to improve liver disorder detection and management. Additionally, the authors will discuss possible therapeutic applications of EVs in liver diseases, which might be a potent treatment option in the future.

 
  • References

  • 1 Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13 (03) 269-288
  • 2 Hirsova P, Ibrahim SH, Verma VK. , et al. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016; 64 (06) 2219-2233
  • 3 van der Pol E, Böing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 2012; 64 (03) 676-705
  • 4 Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015; 25 (06) 364-372
  • 5 van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19 (04) 213-228
  • 6 Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2 (08) 569-579
  • 7 Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63. Exp Cell Res 2009; 315 (09) 1584-1592
  • 8 Hoshino A, Costa-Silva B, Shen T-L. , et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527 (7578): 329-335
  • 9 Kowal J, Arras G, Colombo M. , et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 2016; 113 (08) E968-E977
  • 10 Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol 2010; 6 (01) 21-29
  • 11 Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 2016; 30 (06) 836-848
  • 12 Costa-Silva B, Aiello NM, Ocean AJ. , et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015; 17 (06) 816-826
  • 13 Payancé A, Silva-Junior G, Bissonnette J. , et al. Hepatocyte microvesicle levels improve prediction of mortality in patients with cirrhosis. Hepatology 2018; 68 (04) 1508-1518
  • 14 Engelmann C, Splith K, Krohn S. , et al. Absolute quantification of microparticles by flow cytometry in ascites of patients with decompensated cirrhosis: a cohort study. J Transl Med 2017; 15 (01) 188
  • 15 Brodsky SV, Facciuto ME, Heydt D. , et al. Dynamics of circulating microparticles in liver transplant patients. J Gastrointestin Liver Dis 2008; 17 (03) 261-268
  • 16 Lemoinne S, Thabut D, Housset C. , et al. The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol 2014; 11 (06) 350-361
  • 17 Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 2017; 14 (08) 455-466
  • 18 Taleb RSZ, Moez P, Younan D. , et al. Quantitative proteome analysis of plasma microparticles for the characterization of HCV-induced hepatic cirrhosis and hepatocellular carcinoma. Proteomics Clin Appl 2017; 11 (11–12): 11-12
  • 19 Arbelaiz A, Azkargorta M, Krawczyk M. , et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2017; 66 (04) 1125-1143
  • 20 Abbate V, Marcantoni M, Giuliante F. , et al. HepPar1-positive circulating microparticles are increased in subjects with hepatocellular carcinoma and predict early recurrence after liver resection. Int J Mol Sci 2017; 18 (05) 1-11
  • 21 Julich-Haertel H, Urban SK, Krawczyk M. , et al. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol 2017; 67 (02) 282-292
  • 22 Galle PR, Forner A, Llovet JM. , et al; European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69 (01) 182-236
  • 23 Stewart BW, Wild CP. , eds. World Cancer Report 2014. Lyon: International Agency for Research on Cancer; 2014
  • 24 Bridgewater J, Galle PR, Khan SA. , et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 2014; 60 (06) 1268-1289
  • 25 Povero D, Eguchi A, Li H. , et al. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PLoS One 2014; 9 (12) e113651
  • 26 Povero D, Eguchi A, Niesman IR. , et al. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells. Sci Signal 2013; 6 (296) ra88-ra88
  • 27 Kornek M, Lynch M, Mehta SH. , et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology 2012; 143 (02) 448-458
  • 28 Welsh JA, Scorletti E, Clough GF, Englyst NA, Byrne CD. Leukocyte extracellular vesicle concentration is inversely associated with liver fibrosis severity in NAFLD. J Leukoc Biol 2018; 104 (03) 631-639
  • 29 Stravitz RT, Bowling R, Bradford RL. , et al. Role of procoagulant microparticles in mediating complications and outcome of acute liver injury/acute liver failure. Hepatology 2013; 58 (01) 304-313
  • 30 Schmelzle M, Splith K, Andersen LW. , et al. Increased plasma levels of microparticles expressing CD39 and CD133 in acute liver injury. Transplantation 2013; 95 (01) 63-69
  • 31 Momen-Heravi F, Saha B, Kodys K, Catalano D, Satishchandran A, Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med 2015; 13 (01) 261
  • 32 Rautou PE, Bresson J, Sainte-Marie Y. , et al. Abnormal plasma microparticles impair vasoconstrictor responses in patients with cirrhosis. Gastroenterology 2012; 143 (01) 166-76.e6
  • 33 Melo SA, Luecke LB, Kahlert C. , et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015; 523 (7559): 177-182
  • 34 Bala S, Petrasek J, Mundkur S. , et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 2012; 56 (05) 1946-1957
  • 35 Sohn W, Kim J, Kang SH. , et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 2015; 47 (09) e184
  • 36 Liu WH, Ren LN, Wang X. , et al. Combination of exosomes and circulating microRNAs may serve as a promising tumor marker complementary to alpha-fetoprotein for early-stage hepatocellular carcinoma diagnosis in rats. J Cancer Res Clin Oncol 2015; 141 (10) 1767-1778
  • 37 McDougall SR, Anderson ARA, Chaplain MAJ. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 2006; 241 (03) 564-589
  • 38 Forner A, Vilana R, Ayuso C. , et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology 2008; 47 (01) 97-104
  • 39 Xue R, Li R, Guo H. , et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology 2016; 150 (04) 998-1008
  • 40 Verma VK, Li H, Wang R. , et al. Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol 2016; 64 (03) 651-660
  • 41 Povero D, Panera N, Eguchi A. , et al. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cells via MicroRNA targeting peroxisome proliferator-activated receptor-γ. Cell Mol Gastroenterol Hepatol 2015; 1 (06) 646-663.e4
  • 42 Hirsova P, Ibrahim SH, Krishnan A. , et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 2016; 150 (04) 956-967
  • 43 Ibrahim SH, Hirsova P, Tomita K. , et al. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 2016; 63 (03) 731-744
  • 44 Chusorn P, Namwat N, Loilome W. , et al. Overexpression of microRNA-21 regulating PDCD4 during tumorigenesis of liver fluke-associated cholangiocarcinoma contributes to tumor growth and metastasis. Tumour Biol 2013; 34 (03) 1579-1588
  • 45 Cheng Q, Feng F, Zhu L. , et al. Circulating miR-106a is a novel prognostic and lymph node metastasis indicator for cholangiocarcinoma. Sci Rep 2015; 5 (01) 16103
  • 46 Gerhardt T, Milz S, Schepke M. , et al. C-reactive protein is a prognostic indicator in patients with perihilar cholangiocarcinoma. World J Gastroenterol 2006; 12 (34) 5495-5500
  • 47 Lin Z-Y, Liang Z-X, Zhuang P-L. , et al. Intrahepatic cholangiocarcinoma prognostic determination using pre-operative serum C-reactive protein levels. BMC Cancer 2016; 16 (01) 792
  • 48 Fouraschen SMG, Pan Q, de Ruiter PE. , et al. Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy. Stem Cells Dev 2012; 21 (13) 2410-2419
  • 49 Tan CY, Lai RC, Wong W, Dan YY, Lim S-K, Ho HK. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 2014; 5 (03) 76
  • 50 Li T, Yan Y, Wang B. , et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22 (06) 845-854
  • 51 Jiang W, Tan Y, Cai M. , et al. Human umbilical cord MSC-derived exosomes suppress the development of CCl4-induced liver injury through antioxidant effect. Stem Cells Int 2018; 2018: 6079642
  • 52 Tamura R, Uemoto S, Tabata Y. Immunosuppressive effect of mesenchymal stem cell-derived exosomes on a concanavalin A-induced liver injury model. Inflamm Regen 2016; 36: 26
  • 53 Haga H, Yan IK, Borrelli DA. , et al. Extracellular vesicles from bone marrow-derived mesenchymal stem cells protect against murine hepatic ischemia/reperfusion injury. Liver Transpl 2017; 23 (06) 791-803
  • 54 Haga H, Yan IK, Takahashi K, Matsuda A, Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cells Transl Med 2017; 6 (04) 1262-1272
  • 55 Zhang Y, Liu D, Chen X. , et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39 (01) 133-144
  • 56 Akao Y, Iio A, Itoh T. , et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther 2011; 19 (02) 395-399
  • 57 Haney MJ, Klyachko NL, Zhao Y. , et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 2015; 207: 18-30
  • 58 Kim MS, Haney MJ, Zhao Y. , et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine (Lond) 2016; 12 (03) 655-664
  • 59 Sun D, Zhuang X, Xiang X. , et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010; 18 (09) 1606-1614
  • 60 Wahlgren J, De L Karlson T, Brisslert M. , et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 2012; 40 (17) e130
  • 61 Ota Y, Takahashi K, Otake S. , et al. Extracellular vesicle-encapsulated miR-30e suppresses cholangiocarcinoma cell invasion and migration via inhibiting epithelial-mesenchymal transition. Oncotarget 2018; 9 (23) 16400-16417
  • 62 Chen L, Chen R, Kemper S, Cong M, You H, Brigstock DR. Therapeutic effects of serum extracellular vesicles in liver fibrosis. J Extracell Vesicles 2018; 7 (01) 1461505
  • 63 Lv L-H, Wan Y-L, Lin Y. , et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem 2012; 287 (19) 15874-15885
  • 64 Tang K, Zhang Y, Zhang H. , et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 2012; 3: 1282
  • 65 Tian Y, Li S, Song J. , et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014; 35 (07) 2383-2390
  • 66 George J, Yan IK, Patel T. Nanovesicle-mediated delivery of anticancer agents effectively induced cell death and regressed intrahepatic tumors in athymic mice. Lab Invest 2018; 98 (07) 895-910
  • 67 Chen L, Charrier A, Zhou Y. , et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology 2014; 59 (03) 1118-1129
  • 68 Wang R, Ding Q, Yaqoob U. , et al. Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 2015; 290 (52) 30684-30696
  • 69 Witwer KW, Buzás EI, Bemis LT. , et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2 (02) 1-25
  • 70 Lötvall J, Hill AF, Hochberg F. , et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 2014; 3 (01) 26913