CC BY 4.0 · Rev Bras Ginecol Obstet 2018; 40(12): 763-770
DOI: 10.1055/s-0038-1676037
Original Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Electrophysiological Responses to Different Follicle-Stimulating Hormone Isoforms on Human Cumulus Oophorus Cells: Preliminary Results

Respostas eletrofisiológicas a diferentes isoformas de FSH em células humanas do cumulus oophorus: resultados preliminares
Laura Silveira Ayres
1   Department of Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Adriana Bos-Mikich
1   Department of Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Nilo Frantz
2   Embriology Laboratory, Nilo Frantz Research and Human Reproduction Center, Porto Alegre, RS, Brazil
Letícia Schmidt Arruda
1   Department of Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
Eloísa da Silveira Loss
1   Department of Physiology, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
› Author Affiliations
Further Information

Publication History

06 June 2018

02 October 2018

Publication Date:
07 December 2018 (online)


Objective The aim of the present study was to provide a better understanding of the specific action of two follicle-stimulating hormone (FSH) isoforms (β-follitropin and sheep FSH) on the membrane potential of human cumulus cells.

Methods Electrophysiological data were associated with the characteristics of the patient, such as age and cause of infertility. The membrane potential of cumulus cells was recorded with borosilicate microelectrodes filled with KCl (3 M) with tip resistance of 15 to 25 MΩ. Sheep FSH and β-follitropin were topically administered onto the cells after stabilization of the resting potential for at least 5 minutes.

Results In cumulus cells, the mean resting membrane potential was - 34.02 ± 2.04 mV (n = 14). The mean membrane resistance was 16.5 ± 1.8 MΩ (n = 14). Sheep FSH (4 mUI/mL) and β-follitropin (4 mUI/mL) produced depolarization in the membrane potential 180 and 120 seconds after the administration of the hormone, respectively.

Conclusion Both FSH isoforms induced similar depolarization patterns, but β-follitropin presented a faster response. A better understanding of the differences of the effects of FSH isoforms on cell membrane potential shall contribute to improve the use of gonadotrophins in fertility treatments.


Objetivo O objetivo do presente estudo foi fornecer uma melhor compreensão da ação específica de duas isoformas de hormônio folículo estimulante (FSH, sigla em inglês) (β-folitropina e FSH ovino) no potencial de membrana de células do cumulus oophorus humanas.

Métodos Dados eletrofisiológicos foram associados às características da paciente, como idade e causa da infertilidade. O potencial de membrana das células do cumulus foi registrado com microeletrodos de borossilicato preenchidos com KCl (3 M) com uma resistência de 15 a 25 MΩ. O FSH ovino e a β-folitropina foram administrados topicamente nas células após a estabilização do potencial de repouso durante pelo menos 5 minutos.

Resultados Nas células do cumulus, o potencial médio de membrana em repouso foi de -34,02 ± 2,04 mV (n = 14). A resistência média da membrana foi de 16,5 ± 1,8 MΩ (n = 14). O FSH ovino (4 mUI/mL) e a β-folitropina (4 mUI/mL) produziram despolarização no potencial de membrana 180 e 120 segundos após a aplicação do hormônio, respectivamente.

Conclusão Ambas as isoformas de FSH induzem padrões de despolarização semelhantes, mas a β-folitropina apresentou uma resposta mais rápida. Uma melhor compreensão das diferenças dos efeitos das isoformas do FSH no potencial da membrana celular contribuirá para aprimorar o uso das gonadotrofinas no estímulo ovariano controlado e em protocolos de maturação oocitária in vitro.


Ayres L. S., Bos-Mikich A., Frantz N., Arruda L. S. and Loss E. S. declare to have contributed to the project conception, to the data analysis and interpretation, to the writing of the manuscript, to the relevant critical review of the intellectual content, and to the final approval of the version to be published.

  • References

  • 1 Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update 2003; 9 (01) 35-48 Doi: 10.1093/humupd/dmg009
  • 2 Eppig JJ. Intercommunication between mammalian oocytes and companion somatic cells. BioEssays 1991; 13 (11) 569-574 Doi: 10.1002/bies.950131105
  • 3 Yding Andersen C. Effect of FSH and its different isoforms on maturation of oocytes from pre-ovulatory follicles. Reprod Biomed Online 2002; 5 (03) 232-239 Doi: 10.1016/S1472-6483(10)61826-3
  • 4 Magalhães DM, Araújo VR, Lima-Verde IB. , et al. Impact of pituitary FSH purification on in vitro early folliculogenesis in goats. Biocell 2009; 33 (02) 91-97
  • 5 Flores JA, Veldhuis JD, Leong DA. Follicle-stimulating hormone evokes an increase in intracellular free calcium ion concentrations in single ovarian (granulosa) cells. Endocrinology 1990; 127 (06) 3172-3179 Doi: 10.1210/endo-127-6-3172
  • 6 Loss ES, Jacobus AP, Wassermann GF. Rapid signaling responses in Sertoli cell membranes induced by follicle stimulating hormone and testosterone: calcium inflow and electrophysiological changes. Life Sci 2011; 89 (15-16): 577-583 Doi: 10.1016/j.lfs.2011.05.017
  • 7 Jacobus AP, Loss ES, Wassermann GF. Pertussis toxin nullifies the depolarization of the membrane potential and the stimulation of the rapid phase of Ca entry through L-type calcium channels that are produced by follicle stimulating hormone in 10- to 12-day-old rat Sertoli cells. Front Physiol 2010; 1: 138 Doi: 10.3389/fphys.2010.00138
  • 8 Gilula NB, Epstein ML, Beers WH. Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. J Cell Biol 1978; 78 (01) 58-75 Doi: 10.1083/jcb.78.1.58
  • 9 Wassermann GF, Monti Bloch L, Grillo ML, Silva FRMB, Loss ES, McConnell LL. Electrophysiological changes of Sertoli cells produced by the acute administration of amino acid and FSH. Horm Metab Res 1992; 24 (07) 326-328 Doi: 10.1055/s-2007-1003324
  • 10 Traut MH, Berg D, Berg U, Mayerhofer A, Kunz L. Identification and characterization of Ca2+-activated K+ channels in granulosa cells of the human ovary. Reprod Biol Endocrinol 2009; 7: 28 Doi: 10.1186/1477-7827-7-28
  • 11 European Medicines Agency. Scientific Discussion 2005 . Accessed April 29, 2018.
  • 12 Barrios-De-Tomasi J, Timossi C, Merchant H. , et al. Assessment of the in vitro and in vivo biological activities of the human follicle-stimulating isohormones. Mol Cell Endocrinol 2002; 186 (02) 189-198 Doi: 10.1016/S0303-7207(01)00657-8
  • 13 Creus S, Chaia Z, Pellizzari EH, Cigorraga SB, Ulloa-Aguirre A, Campo S. Human FSH isoforms: carbohydrate complexity as determinant of in-vitro bioactivity. Mol Cell Endocrinol 2001; 174 (1-2): 41-49 Doi: 10.1016/S0303-7207(00)00453-6
  • 14 Timossi CM, Barrios-de-Tomasi J, González-Suárez R. , et al. Differential effects of the charge variants of human follicle-stimulating hormone. J Endocrinol 2000; 165 (02) 193-205
  • 15 Zambrano E, Zariñán T, Olivares A, Barrios-de-Tomasi J, Ulloa-Aguirre A. Receptor binding activity and in vitro biological activity of the human FSH charge isoforms as disclosed by heterologous and homologous assay systems: implications for the structure-function relationship of the FSH variants. Endocrine 1999; 10 (02) 113-121 Doi: 10.1385/ENDO:10:2:113
  • 16 Wang H, Chen X, Zhang X. , et al. Comparative Assessment of glycosylation of a recombinant human FSH and a highly purified FSH extracted from human urine. J Proteome Res 2016; 15 (03) 923-932 Doi: 10.1021/acs.jproteome.5b00921
  • 17 Burghardt RC, Matheson RL. Gap junction amplification in rat ovarian granulosa cells. I. A direct response to follicle-stimulating hormone. Dev Biol 1982; 94 (01) 206-215 Doi: 10.1016/0012-1606(82)90084-7
  • 18 Aires MM. Fisiologia. Rio de Janeiro, RJ: Guanabara Koogan; 2012
  • 19 Ulloa-Aguirre A, Timossi C, Barrios-de-Tomasi J, Maldonado A, Nayudu P. Impact of carbohydrate heterogeneity in function of follicle-stimulating hormone: studies derived from in vitro and in vivo models. Biol Reprod 2003; 69 (02) 379-389 Doi: 10.1095/biolreprod.103.016915
  • 20 Nayudu PL, Vitt UA, Barrios De Tomasi J, Pancharatna K, Ulloa-Aguirre A. Intact follicle culture: what it can tell us about the roles of FSH glycoforms during follicle development. Reprod Biomed Online 2002; 5 (03) 240-253 Doi: 10.1016/S1472-6483(10)61827-5
  • 21 D'Antonio M, Borrelli F, Datola A. , et al. Biological characterization of recombinant human follicle stimulating hormone isoforms. Hum Reprod 1999; 14 (05) 1160-1167
  • 22 Andersen CY, Westergaard LG, van Wely M. FSH isoform composition of commercial gonadotrophin preparations: a neglected aspect?. Reprod Biomed Online 2004; 9 (02) 231-236 Doi: 10.1016/S1472-6483(10)62135-9
  • 23 Hugues JN. Recombinant human follicle-stimulating hormone: a scientific step to clinical improvement. Reprod Biomed Online 2001; 2 (01) 54-64 Doi: 10.1016/S1472-6483(10)62188-8
  • 24 Liu X, Hao C, Wang J. Efficacy of highly purified urinary FSH versus recombinant FSH in Chinese women over 37 years undergoing assisted reproductive techniques. Int J Fertil Steril 2015; 8 (04) 385-392
  • 25 Colacurci N, Caprio F, La Verde E. , et al. Sequential protocol with urinary-FSH/recombinant-FSH versus standard protocol with recombinant-FSH in women of advanced age undergoing IVF. Gynecol Endocrinol 2014; 30 (10) 730-733 Doi: 10.3109/09513590.2014.927856
  • 26 Tosti E, Boni R, Gallo A, Silvestre F. Ion currents modulating oocyte maturation in animals. Syst Biol Reprod Med 2013; 59 (02) 61-68 Doi: 10.3109/19396368.2012.758790
  • 27 Franciosi F, Manandhar S, Conti M. FSH regulates mRNA translation in mouse oocytes and promotes developmental competence. Endocrinology 2016; 157 (02) 872-882 Doi: 10.1210/en.2015-1727