Thromb Haemost 2018; 118(12): 2020-2036
DOI: 10.1055/s-0038-1675399
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Urokinase Plasminogen Activator System in Human Cancers: An Overview of Its Prognostic and Predictive Role

Josip Madunić
1   Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
› Institutsangaben
Funding This work was supported by the University of Zagreb, Faculty of Science.
Weitere Informationen

Publikationsverlauf

14. April 2018

12. September 2018

Publikationsdatum:
12. November 2018 (online)

Abstract

Urokinase plasminogen activator (uPA) system regulates extracellular matrix remodelling by activating ubiquitous protease plasmin in many important physiological processes. The system components include uPA, plasminogen activator inhibitors (PAIs) and uPA receptor (uPAR). Besides its role in physiological processes, uPA system is active in most tumour types where its aberrant regulation has been associated with the development of metastatic phenotype. In vitro and in vivo studies have shown that the over-expression of uPA, PAI-1 and uPAR not only enhances tumour cell invasion capacity and metastasis, but also corresponds to a higher risk of disease correlating with traditional clinicopathological features which makes them potential prognostic biomarkers and therapeutic targets in a wide range of human malignancies. This review focuses on uPA system's prognostic and predictive role in several types of human cancers, summarizing its activities in cancer development and highlighting the importance of addressing all unanswered questions before bridging the gap between laboratory findings to clinic use of uPA system's components as cancer biomarkers.

 
  • References

  • 1 Irigoyen JP, Muñoz-Cánoves P, Montero L, Koziczak M, Nagamine Y. The plasminogen activator system: biology and regulation. Cell Mol Life Sci 1999; 56 (1-2): 104-132
  • 2 Nagamine Y, Medcalf RL, Muñoz-Cánoves P. Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost 2005; 93 (04) 661-675
  • 3 Ulisse S, Baldini E, Sorrenti S, D'Armiento M. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets 2009; 9 (01) 32-71
  • 4 Schmitt M, Mengele K, Gkazepis A. , et al. Assessment of urokinase-type plasminogen activator and its inhibitor PAI-1 in breast cancer tissue: historical aspects and future prospects. Breast Care (Basel) 2008; 3 (s2): 3-10
  • 5 Mengele K, Napieralski R, Magdolen V. , et al. Characteristics of the level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2010; 10 (07) 947-962
  • 6 Solberg H, Ploug M, Høyer-Hansen G, Nielsen BS, Lund LR. The murine receptor for urokinase-type plasminogen activator is primarily expressed in tissues actively undergoing remodeling. J Histochem Cytochem 2001; 49 (02) 237-246
  • 7 Danø K, Behrendt N, Høyer-Hansen G. , et al. Plasminogen activation and cancer. Thromb Haemost 2005; 93 (04) 676-681
  • 8 Lijnen HR. Pleiotropic functions of plasminogen activator inhibitor-1. J Thromb Haemost 2005; 3 (01) 35-45
  • 9 Annecke K, Schmitt M, Euler U. , et al. uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem 2008; 45: 31-45
  • 10 Harbeck N, Schmitt M, Meisner C. , et al; Chemo-N 0 Study Group. Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer 2013; 49 (08) 1825-1835
  • 11 Duffy MJ, McGowan PM, Harbeck N, Thomssen C, Schmitt M. uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res 2014; 16 (04) 428
  • 12 Zhao S, Dorn J, Napieralski R. , et al. Plasmin(ogen) serves as a favorable biomarker for prediction of survival in advanced high-grade serous ovarian cancer. Biol Chem 2017; 398 (07) 765-773
  • 13 Stillfried GE, Saunders DN, Ranson M. Plasminogen binding and activation at the breast cancer cell surface: the integral role of urokinase activity. Breast Cancer Res 2007; 9 (01) R14
  • 14 Wang W, Abbruzzese JL, Evans DB, Chiao PJ. Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 1999; 18 (32) 4554-4563
  • 15 Tran H, Maurer F, Nagamine Y. Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol 2003; 23 (20) 7177-7188
  • 16 Benasciutti E, Pagès G, Kenzior O, Folk W, Blasi F, Crippa MP. MAPK and JNK transduction pathways can phosphorylate Sp1 to activate the uPA minimal promoter element and endogenous gene transcription. Blood 2004; 104 (01) 256-262
  • 17 Hiendlmeyer E, Regus S, Wassermann S. , et al. Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res 2004; 64 (04) 1209-1214
  • 18 Crippa MP. Urokinase-type plasminogen activator. Int J Biochem Cell Biol 2007; 39 (04) 690-694
  • 19 Pulukuri SMK, Estes N, Patel J, Rao JS. Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Res 2007; 67 (03) 930-939
  • 20 Plesner T, Behrendt N, Ploug M. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR. Stem Cells 1997; 15 (06) 398-408
  • 21 Aguirre Ghiso JA, Alonso DF, Farías EF, Gomez DE, de Kier Joffè EB. Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur J Biochem 1999; 263 (02) 295-304
  • 22 Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling. FEBS Lett 2010; 584 (09) 1923-1930
  • 23 Harbeck N, Kates RE, Gauger K. , et al. Urokinase-type plasminogen activator (uPA) and its inhibitor PAI-I: novel tumor-derived factors with a high prognostic and predictive impact in breast cancer. Thromb Haemost 2004; 91 (03) 450-456
  • 24 Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 2010; 11 (01) 23-36
  • 25 Huber MC, Falkenberg N, Hauck SM. , et al. Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget 2016; 7 (28) 44062-44075
  • 26 Huber MC, Mall R, Braselmann H. , et al. uPAR enhances malignant potential of triple-negative breast cancer by directly interacting with uPA and IGF1R. BMC Cancer 2016; 16: 615
  • 27 Montuori N, Pesapane A, Rossi FW. , et al. Urokinase type plasminogen activator receptor (uPAR) as a new therapeutic target in cancer. Transl Med UniSa 2016; 15: 15-21
  • 28 Sato S, Kopitz C, Grismayer B. , et al. Overexpression of the urokinase receptor mRNA splice variant uPAR-del4/5 affects tumor-associated processes of breast cancer cells in vitro and in vivo. Breast Cancer Res Treat 2011; 127 (03) 649-657
  • 29 Su S-C, Lin C-W, Yang W-E, Fan W-L, Yang S-F. The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets 2016; 20 (05) 551-566
  • 30 Duffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004; 10 (01) 39-49
  • 31 Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 2008; 34 (02) 122-136
  • 32 Killeen SD, Wang JH, Andrews EJ, Redmond HP. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system. Br J Cancer 2009; 100 (10) 1589-1602
  • 33 Chou RH, Hsieh SC, Yu YL, Huang MH, Huang YC, Hsieh YH. Fisetin inhibits migration and invasion of human cervical cancer cells by down-regulating urokinase plasminogen activator expression through suppressing the p38 MAPK-dependent NF-κB signaling pathway. PLoS One 2013; 8: 1-12
  • 34 Belaguli NS, Aftab M, Rigi M, Zhang M, Albo D, Berger DH. GATA6 promotes colon cancer cell invasion by regulating urokinase plasminogen activator gene expression. Neoplasia 2010; 12 (11) 856-865
  • 35 Zou Z, Zeng F, Xu W. , et al. PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-κB- and HDAC1-mediated expression and activation of uPA. J Cell Sci 2012; 125 (Pt 20): 4800-4811
  • 36 Herszényi L, Farinati F, Cardin R. , et al. Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer. BMC Cancer 2008; 8: 194
  • 37 Hsieh M-J, Yeh C-B, Chiou H-L, Hsieh M-C, Yang S-F. Dioscorea nipponica attenuates migration and invasion by inhibition of urokinase-type plasminogen activator through involving PI3K/Akt and transcriptional inhibition of NF-[Formula: see text]B and SP-1 in hepatocellular carcinoma. Am J Chin Med 2016; 44 (01) 177-195
  • 38 Kotzsch M, Farthmann J, Meye A. , et al. Prognostic relevance of uPAR-del4/5 and TIMP-3 mRNA expression levels in breast cancer. Eur J Cancer 2005; 41 (17) 2760-2768
  • 39 Harbeck N, Schmitt M, Paepke S, Allgayer H, Kates RE. Tumor-associated proteolytic factors uPA and PAI-1: critical appraisal of their clinical relevance in breast cancer and their integration into decision-support algorithms. Crit Rev Clin Lab Sci 2007; 44 (02) 179-201
  • 40 Schmitt M, Mengele K, Napieralski R. , et al. Clinical utility of level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2010; 10 (08) 1051-1067
  • 41 Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev 2014; 34 (05) 918-956
  • 42 Luther T, Kotzsch M, Meye A. , et al. Identification of a novel urokinase receptor splice variant and its prognostic relevance in breast cancer. Thromb Haemost 2003; 89 (04) 705-717
  • 43 Béné MC, Castoldi G, Knapp W. , et al; EGIL, European Group on Immunological Classification of Leukemias. CD87 (urokinase-type plasminogen activator receptor), function and pathology in hematological disorders: a review. Leukemia 2004; 18 (03) 394-400
  • 44 Oldenhuis CNAM, Oosting SF, Gietema JA, de Vries EGE. Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer 2008; 44 (07) 946-953
  • 45 Clark GM. Prognostic factors versus predictive factors: examples from a clinical trial of erlotinib. Mol Oncol 2008; 1 (04) 406-412
  • 46 Ballman KV. Biomarker: predictive or prognostic?. J Clin Oncol 2015; 33 (33) 3968-3971
  • 47 Duffy MJ, O'Grady P, Devaney D, O'Siorain L, Fennelly JJ, Lijnen HJ. Urokinase-plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer 1988; 62 (03) 531-533
  • 48 Harbeck N, Kates RE, Schmitt M. , et al. Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer. Clin Breast Cancer 2004; 5 (05) 348-352
  • 49 Schmitt M, Harbeck N, Brünner N. , et al. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2011; 11 (06) 617-634
  • 50 Kantelhardt EJ, Vetter M, Schmidt M. , et al. Prospective evaluation of prognostic factors uPA/PAI-1 in node-negative breast cancer: phase III NNBC3-Europe trial (AGO, GBG, EORTC-PBG) comparing 6×FEC versus 3×FEC/3×Docetaxel. BMC Cancer 2011; 11: 140
  • 51 Look MP, van Putten WLJ, Duffy MJ. , et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst 2002; 94 (02) 116-128
  • 52 Kolben T, Augustin D, Armbrust R. , et al. Impact of guideline-based use of uPA/PAI-1 on patient outcome in intermediate-risk early breast cancer. Breast Cancer Res Treat 2016; 155 (01) 109-115
  • 53 Look M, van Putten W, Duffy M. , et al. Pooled analysis of prognostic impact of uPA and PAI-1 in breast cancer patients. Thromb Haemost 2003; 90 (03) 538-548
  • 54 Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol 2007; 8 (03) 235-244
  • 55 Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need. Oncologist 2011; 16 (Suppl. 01) 1-11
  • 56 Foekens JA, Peters HA, Look MP. , et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000; 60 (03) 636-643
  • 57 Ranson M, Andronicos NM, O'Mullane MJ, Baker MS. Increased plasminogen binding is associated with metastatic breast cancer cells: differential expression of plasminogen binding proteins. Br J Cancer 1998; 77 (10) 1586-1597
  • 58 Zemzoum I, Kates RE, Ross JS. , et al. Invasion factors uPA/PAI-1 and HER2 status provide independent and complementary information on patient outcome in node-negative breast cancer. J Clin Oncol 2003; 21 (06) 1022-1028
  • 59 Witzel I, Milde-Langosch K, Schmidt M. , et al. Role of urokinase plasminogen activator and plasminogen activator inhibitor mRNA expression as prognostic factors in molecular subtypes of breast cancer. Onco Targets Ther 2014; 7: 2205-2213
  • 60 Buta M, Džodić R, Đurišić I. , et al. Potential clinical relevance of uPA and PAI-1 levels in node-negative, postmenopausal breast cancer patients bearing histological grade II tumors with ER/PR expression, during an early follow-up. Tumour Biol 2015; 36 (10) 8193-8200
  • 61 Lampelj M, Arko D, Cas-Sikosek N. , et al. Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) in breast cancer - correlation with traditional prognostic factors. Radiol Oncol 2015; 49 (04) 357-364
  • 62 Dovnik NF, Takac I. Prognostic significance of uPA/PAI-1 level, HER2 status, and traditional histologic factors for survival in node-negative breast cancer patients. Radiol Oncol 2016; 51 (01) 65-73
  • 63 Kotzsch M, Sieuwerts AM, Grosser M. , et al. Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor. Breast Cancer Res Treat 2008; 111 (02) 229-240
  • 64 Thielemann A, Baszczuk A, Kopczyński P, Kopczyński Z. High concentration of urokinase-type plasminogen activator receptor in the serum of women with primary breast cancer. Contemp Oncol (Pozn) 2013; 17 (05) 440-445
  • 65 Thurison T, Almholt K, Gårdsvoll H, Ploug M, Høyer-Hansen G, Lund IK. Urokinase receptor cleavage correlates with tumor volume in a transgenic mouse model of breast cancer. Mol Carcinog 2016; 55 (05) 717-731
  • 66 Grismayer B, Sato S, Kopitz C. , et al. Overexpression of the urokinase receptor splice variant uPAR-del4/5 in breast cancer cells affects cell adhesion and invasion in a dose-dependent manner and modulates transcription of tumor-associated genes. Biol Chem 2012; 393 (12) 1449-1455
  • 67 van Veen M, Matas-Rico E, van de Wetering K. , et al. Negative regulation of urokinase receptor activity by a GPI-specific phospholipase C in breast cancer cells. eLife 2017; 6: 1-20
  • 68 Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2 (06) 442-454
  • 69 Jo M, Lester RD, Montel V, Eastman B, Takimoto S, Gonias SL. Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. J Biol Chem 2009; 284 (34) 22825-22833
  • 70 Jo M, Eastman BM, Webb DL, Stoletov K, Klemke R, Gonias SL. Cell signaling by urokinase-type plasminogen activator receptor induces stem cell-like properties in breast cancer cells. Cancer Res 2010; 70 (21) 8948-8958
  • 71 Moirangthem A, Bondhopadhyay B, Mukherjee M. , et al. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes. Sci Rep 2016; 6: 21903
  • 72 Meijer-van Gelder ME, Look MP, Peters HA. , et al. Urokinase-type plasminogen activator system in breast cancer: association with tamoxifen therapy in recurrent disease. Cancer Res 2004; 64 (13) 4563-4568
  • 73 Marguet S, Mazouni C, Ramaekers BLT. , et al. European cost-effectiveness study of uPA/PAI-1 biomarkers to guide adjuvant chemotherapy decisions in breast cancer. Eur J Cancer 2016; 63: 168-179
  • 74 Jacobs VR, Kates RE, Kantelhardt E. , et al. Health economic impact of risk group selection according to ASCO-recommended biomarkers uPA/PAI-1 in node-negative primary breast cancer. Breast Cancer Res Treat 2013; 138 (03) 839-850
  • 75 Thomssen C, Harbeck N, Dittmer J. , et al. Feasibility of measuring the prognostic factors uPA and PAI-1 in core needle biopsy breast cancer specimens. J Natl Cancer Inst 2009; 101 (14) 1028-1029
  • 76 Malinowsky K, Böllner C, Hipp S, Berg D, Schmitt M, Becker KF. UPA and PAI-1 analysis from fixed tissues - new perspectives for a known set of predictive markers. Curr Med Chem 2010; 17 (35) 4370-4377
  • 77 Biermann JC, Holzscheiter L, Kotzsch M. , et al. Quantitative RT-PCR assays for the determination of urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 mRNA in primary tumor tissue of breast cancer patients: comparison to antigen quantification by ELISA. Int J Mol Med 2008; 21 (02) 251-259
  • 78 Li X-F, Yan P-J, Shao Z-M. Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene 2009; 28 (44) 3937-3948
  • 79 Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S. Impaired microRNA processing facilitates breast cancer cell invasion by upregulating urokinase-type plasminogen activator expression. Genes Cancer 2011; 2 (02) 140-150
  • 80 Falkenberg N, Anastasov N, Schaub A. , et al. Secreted uPAR isoform 2 (uPAR7b) is a novel direct target of miR-221. Oncotarget 2015; 6 (10) 8103-8114
  • 81 Zong H, Wang F, Fan QX, Wang LX. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol Biol Rep 2012; 39 (04) 4803-4808
  • 82 Lang DS, Marwitz S, Heilenkötter U. , et al. Transforming growth factor-beta signaling leads to uPA/PAI-1 activation and metastasis: a study on human breast cancer tissues. Pathol Oncol Res 2014; 20 (03) 727-732
  • 83 Madunić J, Horvat L, Majstorović I, Jodłowska I, Antica M, Matulić M. Sodium salicylate inhibits urokinase activity in MDA MB-231 breast cancer cells. Clin Breast Cancer 2017; 17 (08) 629-637
  • 84 Kumano M, Miyake H, Muramaki M, Furukawa J, Takenaka A, Fujisawa M. Expression of urokinase-type plasminogen activator system in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol Oncol 2009; 27 (02) 180-186
  • 85 Milanese G, Dellabella M, Fazioli F. , et al. Increased urokinase-type plasminogen activator receptor and epidermal growth factor receptor in serum of patients with prostate cancer. J Urol 2009; 181 (03) 1393-1400
  • 86 Almasi CE, Brasso K, Iversen P. , et al. Prognostic and predictive value of intact and cleaved forms of the urokinase plasminogen activator receptor in metastatic prostate cancer. Prostate 2011; 71 (08) 899-907
  • 87 Al-Janabi O, Taubert H, Lohse-Fischer A. , et al. Association of tissue mRNA and serum antigen levels of members of the urokinase-type plasminogen activator system with clinical and prognostic parameters in prostate cancer. BioMed Res Int 2014; 2014: 972587
  • 88 Wach S, Al-Janabi O, Weigelt K. , et al. The combined serum levels of miR-375 and urokinase plasminogen activator receptor are suggested as diagnostic and prognostic biomarkers in prostate cancer. Int J Cancer 2015; 137 (06) 1406-1416
  • 89 Böhm L, Serafin A, Akudugu J, Fernandez P, van der Merwe A, Aziz NA. uPA/PAI-1 ratios distinguish benign prostatic hyperplasia and prostate cancer. J Cancer Res Clin Oncol 2013; 139 (07) 1221-1228
  • 90 Hagelgans A, Menschikowski M, Fuessel S. , et al. Deregulated expression of urokinase and its inhibitor type 1 in prostate cancer cells: role of epigenetic mechanisms. Exp Mol Pathol 2013; 94 (03) 458-465
  • 91 Zhang J, Sud S, Mizutani K, Gyetko MR, Pienta KJ. Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model. Neoplasia 2011; 13 (01) 23-30
  • 92 Ahmad A, Kong D, Sarkar SH, Wang Z, Banerjee S, Sarkar FH. Inactivation of uPA and its receptor uPAR by 3,3′-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem 2009; 107 (03) 516-527
  • 93 Rabbani SA, Ateeq B, Arakelian A. , et al. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia 2010; 12 (10) 778-788
  • 94 Qi M, Liu Z, Shen C. , et al. Overexpression of ETV4 is associated with poor prognosis in prostate cancer: involvement of uPA/uPAR and MMPs. Tumour Biol 2015; 36 (05) 3565-3572
  • 95 Shi C, Zhang N, Feng Y, Cao J, Chen X, Liu B. Aspirin inhibits IKK-β-mediated prostate cancer cell invasion by targeting matrix metalloproteinase-9 and urokinase-type plasminogen activator. Cell Physiol Biochem 2017; 41 (04) 1313-1324
  • 96 Randle DD, Clarke S, Henderson V, Odero-Marah VA. Snail mediates invasion through uPA/uPAR and the MAPK signaling pathway in prostate cancer cells. Oncol Lett 2013; 6 (06) 1767-1773
  • 97 Xie C, Jiang XH, Zhang JT. , et al. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene 2013; 32 (18) 2282-2291 , 2291.e1–2291.e7
  • 98 Langenskiöld M, Holmdahl L, Angenete E, Falk P, Nordgren S, Ivarsson ML. Differential prognostic impact of uPA and PAI-1 in colon and rectal cancer. Tumour Biol 2009; 30 (04) 210-220
  • 99 Minoo P, Baker K, Baumhoer D, Terracciano L, Lugli A, Zlobec I. Urokinase-type plasminogen activator is a marker of aggressive phenotype and an independent prognostic factor in mismatch repair-proficient colorectal cancer. Hum Pathol 2010; 41 (01) 70-78
  • 100 Lomholt AF, Høyer-Hansen G, Nielsen HJ, Christensen IJ. Intact and cleaved forms of the urokinase receptor enhance discrimination of cancer from non-malignant conditions in patients presenting with symptoms related to colorectal cancer. Br J Cancer 2009; 101 (06) 992-997
  • 101 Lomholt AF, Christensen IJ, Høyer-Hansen G, Nielsen HJ. Prognostic value of intact and cleaved forms of the urokinase plasminogen activator receptor in a retrospective study of 518 colorectal cancer patients. Acta Oncol 2010; 49 (06) 805-811
  • 102 Tarpgaard LS, Christensen IJ, Høyer-Hansen G. , et al. Intact and cleaved plasma soluble urokinase receptor in patients with metastatic colorectal cancer treated with oxaliplatin with or without cetuximab. Int J Cancer 2015; 137 (10) 2470-2477
  • 103 Bujanda L, Sarasqueta C, Cosme A. , et al. Evaluation of alpha 1-antitrypsin and the levels of mRNA expression of matrix metalloproteinase 7, urokinase type plasminogen activator receptor and COX-2 for the diagnosis of colorectal cancer. PLoS One 2013; 8 (01) e51810
  • 104 Illemann M, Laerum OD, Hasselby JP. , et al; Danish Study Group on Early Detection of Colorectal Cancer. Urokinase-type plasminogen activator receptor (uPAR) on tumor-associated macrophages is a marker of poor prognosis in colorectal cancer. Cancer Med 2014; 3 (04) 855-864
  • 105 Ahn SB, Chan C, Dent OF. , et al. Epithelial and stromal cell urokinase plasminogen activator receptor expression differentially correlates with survival in rectal cancer stages B and C patients. PLoS One 2015; 10 (02) e0117786
  • 106 Huang W-S, Chin C-C, Chen C-N. , et al. Stromal cell-derived factor-1/CXC receptor 4 and β1 integrin interaction regulates urokinase-type plasminogen activator expression in human colorectal cancer cells. J Cell Physiol 2012; 227 (03) 1114-1122
  • 107 Liu X, Qiu F, Liu Z. , et al. Urokinase-type plasminogen activator receptor regulates apoptotic sensitivity of colon cancer HCT116 cell line to TRAIL via JNK-p53 pathway. Apoptosis 2014; 19 (10) 1532-1544
  • 108 Jin H, Li XJ, Park MH, Kim SM. FOXM1-mediated downregulation of uPA and MMP9 by 3,3′-diindolylmethane inhibits migration and invasion of human colorectal cancer cells. Oncol Rep 2015; 33 (06) 3171-3177
  • 109 Van Buren II G, Gray MJ, Dallas NA. , et al. Targeting the urokinase plasminogen activator receptor with a monoclonal antibody impairs the growth of human colorectal cancer in the liver. Cancer 2009; 115 (14) 3360-3368
  • 110 Lugli A, Karamitopoulou E, Zlobec I. Tumour budding: a promising parameter in colorectal cancer. Br J Cancer 2012; 106 (11) 1713-1717
  • 111 Märkl B, Renk I, Oruzio DV. , et al. Tumour budding, uPA and PAI-1 are associated with aggressive behaviour in colon cancer. J Surg Oncol 2010; 102 (03) 235-241
  • 112 Märkl B, Hardt J, Franz S. , et al. Tumor budding, uPA, and PAI-1 in colorectal cancer: update of a prospective study. Gastroenterol Res Pract 2017; 2017: 6504960
  • 113 Kim MH, Park JS, Chang HJ. , et al. Lysophosphatidic acid promotes cell invasion by up-regulating the urokinase-type plasminogen activator receptor in human gastric cancer cells. J Cell Biochem 2008; 104 (03) 1102-1112
  • 114 Khoi PN, Xia Y, Lian S. , et al. Cadmium induces urokinase-type plasminogen activator receptor expression and the cell invasiveness of human gastric cancer cells via the ERK-1/2, NF-κB, and AP-1 signaling pathways. Int J Oncol 2014; 45 (04) 1760-1768
  • 115 Lian S, Xia Y, Ung TT. , et al. Prostaglandin E2 stimulates urokinase-type plasminogen activator receptor via EP2 receptor-dependent signaling pathways in human AGS gastric cancer cells. Mol Carcinog 2017; 56 (02) 664-680
  • 116 Pan G, Zhu Z, Huang J. , et al. Semaphorin 5A promotes gastric cancer invasion/metastasis via urokinase-type plasminogen activator/phosphoinositide 3-kinase/protein kinase B. Dig Dis Sci 2013; 58 (08) 2197-2204
  • 117 Alpízar-Alpízar W, Christensen IJ, Santoni-Rugiu E. , et al. Urokinase plasminogen activator receptor on invasive cancer cells: a prognostic factor in distal gastric adenocarcinoma. Int J Cancer 2012; 131 (04) E329-E336
  • 118 Ding Y, Zhang H, Zhong M. , et al. Clinical significance of the uPA system in gastric cancer with peritoneal metastasis. Eur J Med Res 2013; 18: 28
  • 119 Ding Y, Zhang H, Lu A. , et al. Effect of urokinase-type plasminogen activator system in gastric cancer with peritoneal metastasis. Oncol Lett 2016; 11 (06) 4208-4216
  • 120 Yang XW, Gao F, Chen YJ, Teng FM. The clinical study of urokinase-type plasminogen activator and vascular endothelial growth factor in gastric cancer. Cell Biochem Biophys 2015; 72 (03) 649-652
  • 121 Tang Z, Sheng H, Zheng X. , et al. Upregulation of circulating cytokeratin 20, urokinase plasminogen activator and C-reactive protein is associated with poor prognosis in gastric cancer. Mol Clin Oncol 2015; 3 (06) 1213-1220
  • 122 Tian B, Chen X, Zhang H. , et al. Urokinase plasminogen activator secreted by cancer-associated fibroblasts induces tumor progression via PI3K/AKT and ERK signaling in esophageal squamous cell carcinoma. Oncotarget 2017; 8 (26) 42300-42313
  • 123 Li H, Chen C. Quercetin has antimetastatic effects on gastric cancer cells via the interruption of uPA/uPAR function by modulating NF-κb, PKC-δ, ERK1/2, and AMPKα. Integr Cancer Ther 2018; 17 (02) 511-523
  • 124 Li T, Jiang S. Effect of bFGF on invasion of ovarian cancer cells through the regulation of Ets-1 and urokinase-type plasminogen activator. Pharm Biol 2010; 48 (02) 161-165
  • 125 Kenny HA, Leonhardt P, Ladanyi A. , et al. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis. Clin Cancer Res 2011; 17 (03) 459-471
  • 126 Zhang W, Ling D, Tan J, Zhang J, Li L. Expression of urokinase plasminogen activator and plasminogen activator inhibitor type-1 in ovarian cancer and its clinical significance. Oncol Rep 2013; 29 (02) 637-645
  • 127 Ghasemi A, Hashemy SI, Aghaei M, Panjehpour M. RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells. Cell Signal 2017; 32: 104-114
  • 128 Henic E, Borgfeldt C, Christensen IJ, Casslén B, Høyer-Hansen G. Cleaved forms of the urokinase plasminogen activator receptor in plasma have diagnostic potential and predict postoperative survival in patients with ovarian cancer. Clin Cancer Res 2008; 14 (18) 5785-5793
  • 129 Kotzsch M, Dorn J, Doetzer K. , et al. mRNA expression levels of the biological factors uPAR, uPAR-del4/5, and rab31, displaying prognostic value in breast cancer, are not clinically relevant in advanced ovarian cancer. Biol Chem 2011; 392 (11) 1047-1051
  • 130 Wang L, Madigan MC, Chen H. , et al. Expression of urokinase plasminogen activator and its receptor in advanced epithelial ovarian cancer patients. Gynecol Oncol 2009; 114 (02) 265-272
  • 131 Chen H, Hao J, Wang L, Li Y. Coexpression of invasive markers (uPA, CD44) and multiple drug-resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer 2009; 101 (03) 432-440
  • 132 Almasi CE, Høyer-Hansen G, Christensen IJ, Pappot H. Prognostic significance of urokinase plasminogen activator receptor and its cleaved forms in blood from patients with non-small cell lung cancer. APMIS 2009; 117 (10) 755-761
  • 133 Almasi CE, Christensen IJ, Høyer-Hansen G. , et al. Urokinase receptor forms in serum from non-small cell lung cancer patients: relation to prognosis. Lung Cancer 2011; 74 (03) 510-515
  • 134 Almasi CE, Drivsholm L, Pappot H, Høyer-Hansen G, Christensen IJ. The liberated domain I of urokinase plasminogen activator receptor--a new tumour marker in small cell lung cancer. APMIS 2013; 121 (03) 189-196
  • 135 Lee SB, Ho J-N, Yoon SH, Kang GY, Hwang S-G, Um H-D. Peroxiredoxin 6 promotes lung cancer cell invasion by inducing urokinase-type plasminogen activator via p38 kinase, phosphoinositide 3-kinase, and Akt. Mol Cells 2009; 28 (06) 583-588
  • 136 Toupance S, Brassart B, Rabenoelina F. , et al. Elastin-derived peptides increase invasive capacities of lung cancer cells by post-transcriptional regulation of MMP-2 and uPA. Clin Exp Metastasis 2012; 29 (05) 511-522
  • 137 Provost JJ, Rastedt D, Canine J. , et al. Urokinase plasminogen activator receptor induced non-small cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity. Cell Oncol (Dordr) 2012; 35 (02) 95-110
  • 138 Shih C-M, Kuo W-H, Lin C-W. , et al. Association of polymorphisms in the genes of the urokinase plasminogen activation system with susceptibility to and severity of non-small cell lung cancer. Clin Chim Acta 2011; 412 (1-2): 194-198
  • 139 Büchler P, Reber HA, Tomlinson JS. , et al. Transcriptional regulation of urokinase-type plasminogen activator receptor by hypoxia-inducible factor 1 is crucial for invasion of pancreatic and liver cancer. Neoplasia 2009; 11 (02) 196-206
  • 140 Gorantla B, Asuthkar S, Rao JS, Patel J, Gondi CS. Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res 2011; 9 (04) 377-389
  • 141 Asuthkar S, Stepanova V, Lebedeva T. , et al. Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer. Mol Biol Cell 2013; 24 (17) 2620-2632
  • 142 Fontanil T, Mohamedi Y, Esteban MM, Obaya AJ, Cal S. Polyserase-1/TMPRSS9 induces pro-tumor effects in pancreatic cancer cells by activation of pro-uPA. Oncol Rep 2014; 31 (06) 2792-2796
  • 143 He X, Zheng Z, Li J. , et al. DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. Carcinogenesis 2012; 33 (03) 555-562
  • 144 de Geus SW, Baart VM, Boonstra MC. , et al. Prognostic impact of urokinase plasminogen activator receptor expression in pancreatic cancer: malignant versus stromal cells. Biomark Insights 2017; 12: 1177271917715443