Hamostaseologie 2018; 38(04): 203-210
DOI: 10.1055/s-0038-1675144
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Platelet Signaling in Primary Haemostasis and Arterial Thrombus Formation[*]: Part 1

Rüdiger E. Scharf
1   Division of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, University Blood Center, and Haemophilia Comprehensive Care Center, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
2   Biological Medical Research Center, Heinrich Heine University, Düsseldorf, Germany
› Author Affiliations
Further Information

Publication History

13 April 2018

18 September 2018

Publication Date:
23 October 2018 (online)

Abstract

Platelets react immediately in response to traumatic vascular injury by adhesion, activation, aggregation and subsequent haemostatic plug formation. While this reaction pattern is essential for haemostasis, platelet responses can also cause occlusive thrombi in diseased arteries, leading to myocardial infarction or stroke. Initially, flowing platelets are captured from the circulation to vascular lesions. This step is mediated by glycoprotein (GP) Ib-IX-V interacting with immobilized von Willebrand factor (VWF) on exposed subendothelial components. Tethered platelets can now bind to collagen through GPVI and integrin α2β1. Outside-in signals from the adhesion receptors act synergistically with inside-out signals from soluble stimuli and induce platelet activation. These mediators operate through G protein–coupled receptors and reinforce adhesion and activation. Typical manifestations of activated platelets include calcium mobilization, procoagulant activity, cytoskeletal reorganization, granule secretion and aggregation. This requires activation of integrin αIIbβ3 with shifting into a high-affinity state and is indispensable to bind soluble fibrinogen, VWF and fibronectin. The multiple interactions and the impact of thrombin result in firm adhesion and recruitment of circulating platelets into growing aggregates. A fibrin meshwork supports stabilization of haemostatic thrombi and prevents detachment by the flowing blood. This two-part review provides an overview of platelet activation and signal transduction mechanisms with a focus on αIIbβ3-mediated outside-in signaling in integrin variants. In the first part, a three-stage model of platelet recruitment and activation in vivo is presented. Along with that, platelet responses upon exposure to thrombogenic surfaces followed by platelet-to-platelet interactions and formation of haemostatic thrombi are discussed. Moreover, several determinants involved in pathological thrombosis will be reviewed.

Zusammenfassung

Bei traumatischer Gefäßwandverletzung reagieren Plättchen unverzüglich mit Adhäsion, Aktivierung, Aggregation und nachfolgender Bildung eines hämostatischen Pfropfs. Dieses Reaktionsmuster ist essentiell für die Hämostase, kann aber in krankhaft veränderten Gefäßen okkludierende Thromben hervorrufen, die einen Herzinfarkt oder Schlaganfall auslösen. Initial werden zirkulierende Plättchen im Bereich von Gefäßwandläsionen eingefangen. Dieser Schritt wird durch Wechselwirkung von Glykoprotein (GP) Ib-IX-V mit immobilisiertem von-Willebrand-Faktor (VWF) auf freigelegten Subendothelkomponenten vermittelt. Die 'angegurteten' Plättchen binden nun über GPVI und Integrin α2β1 an Kollagen. Die von Adhäsionsrezeptoren ausgelösten 'Outside-in'-Signale wirken in Synergie mit 'Inside-out'-Signalen diffusibler Agonisten und aktivieren die Plättchen. Diese Mediatoren wirken über G-Protein-gekoppelte Rezeptoren und verstärken Adhäsion und Aktivierung. Typische Funktionsäußerungen aktivierter Plättchen sind Kalziummobilisierung, prokoagulatorische Aktivität, Umorganisation des Zytoskeletts, Granulasekretion und Aggregation. Letzteres setzt Aktivierung von Integrin αIIbβ3 mit Übergang in einen hochaffinen Zustand voraus und ist unabdingbar für die Bindung löslichen Fibrinogens, VWF und Fibronektins. Die multiplen Interaktionen führen unter Einfluss von Thrombin zur Verfestigung der Adhäsion und durch Einbeziehung zirkulierender Plättchen zur Größenzunahme des Aggregats. Ein Fibrinnetz fördert die Stabilisierung hämostatischer Thromben und wirkt ihrer Ablösung durch den Blutstrom entgegen. Diese zweiteilige Übersicht erörtert Abläufe bei Plättchenaktivierung und Signaltransduktion und rückt αIIbβ3-vermittelte 'Outside-in'-Signalvorgänge bei Integrinvarianten in den Mittelpunkt. In Teil I wird ein 3-stufiges Model zur Plättchenrekrutierung und -aktivierung vorgestellt. Thrombozytäre Funktionsäußerungen bei Exposition thrombogener Oberflächen und Plättchen-Plättchenwechselbeziehungen mit nachfolgender Thrombusbildung werden im Detail besprochen. Auch wird auf verschiedene Einflussgrößen eingegangen, die unter pathologischen Bedingungen eine Thrombose hervorrufen.

* Dedicated to the memory of Prof. Ernst F. Lüscher (1916–2002), who was my postdoc mentor.


 
  • References

  • 1 Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 1992; 326 (04) 242-250
  • 2 Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007; 100 (12) 1673-1685
  • 3 Iannacone M, Sitia G, Ruggeri ZM, Guidotti LG. HBV pathogenesis in animal models: recent advances on the role of platelets. J Hepatol 2007; 46 (04) 719-726
  • 4 Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67 (04) 525-544
  • 5 Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 2014; 5: 649
  • 6 Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol 2003; 23 (12) 2131-2137
  • 7 Isermann B, Nawroth PP. Relevance of platelets in placental development and function [in German]. Hamostaseologie 2007; 27 (04) 263-267
  • 8 Patzelt J, Langer HF. Platelets in angiogenesis. Curr Vasc Pharmacol 2012; 10 (05) 570-577
  • 9 Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost 2014; 40 (03) 277-283
  • 10 Boucharaba A, Serre CM, Grès S. , et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004; 114 (12) 1714-1725
  • 11 Gupta GP, Massagué J. Platelets and metastasis revisited: a novel fatty link. J Clin Invest 2004; 114 (12) 1691-1693
  • 12 Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol 2002; 3 (07) 425-430
  • 13 Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (02) 123-134
  • 14 Jain S, Zuka M, Liu J. , et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A 2007; 104 (21) 9024-9028
  • 15 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
  • 16 Ruggeri ZM. Platelet adhesion under flow. Microcirculation 2009; 16 (01) 58-83
  • 17 Ruggeri ZM, Mendolicchio GL. Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie 2015; 35 (03) 211-224
  • 18 Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962; 194: 927-929
  • 19 Lüscher EF, Weber S. The formation of the haemostatic plug--a special case of platelet aggregation. An experiment and a survey of the literature. Thromb Haemost 1993; 70 (02) 234-237
  • 20 Savage B, Ruggeri ZM. Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein IIb-IIIa on nonactivated platelets. J Biol Chem 1991; 266 (17) 11227-11233
  • 21 Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84 (02) 289-297
  • 22 Loncar R, Stoldt V, Hellmig S, Zotz RB, Mihalj M, Scharf RE. HPA-1 polymorphism of alphaIIbbeta3 modulates platelet adhesion onto immobilized fibrinogen in an in-vitro flow system. Thromb J 2007; 5: 2
  • 23 Loncar R, Zotz RB, Sucker C, Vodovnik A, Mihalj M, Scharf RE. Platelet adhesion onto immobilized fibrinogen under arterial and venous in-vitro flow conditions does not significantly differ between men and women. Thromb J 2007; 5: 5
  • 24 Tangelder GJ, Slaaf DW, Arts T, Reneman RS. Wall shear rate in arterioles in vivo: least estimates from platelet velocity profiles. Am J Physiol 1988; 254 (6, Pt 2): H1059-H1064
  • 25 Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng 1997; 25 (02) 344-356
  • 26 Strony J, Beaudoin A, Brands D, Adelman B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am J Physiol 1993; 265 (5, Pt 2): H1787-H1796
  • 27 Mourik M, Eikenboom J. Lifecycle of Weibel-Palade bodies. Hamostaseologie 2017; 37 (01) 13-24
  • 28 Brehm MA. Von Willebrand factor processing. Hamostaseologie 2017; 37 (01) 59-72
  • 29 Kim J, Zhang CZ, Zhang X, Springer TA. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 2010; 466 (7309): 992-995
  • 30 Blenner MA, Dong X, Springer TA. Structural basis of regulation of von Willebrand factor binding to glycoprotein Ib. J Biol Chem 2014; 289 (09) 5565-5579
  • 31 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94 (05) 657-666
  • 32 Mazzucato M, Pradella P, Cozzi MR, De Marco L, Ruggeri ZM. Sequential cytoplasmic calcium signals in a 2-stage platelet activation process induced by the glycoprotein Ibα mechanoreceptor. Blood 2002; 100 (08) 2793-2800
  • 33 Kehrel B, Wierwille S, Clemetson KJ. , et al. Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 1998; 91 (02) 491-499
  • 34 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor?. Blood 2003; 102 (02) 449-461
  • 35 Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002; 8 (11) 1227-1234
  • 36 Stegner D, Nieswandt B. Platelet receptor signaling in thrombus formation. J Mol Med 2011; 89 (02) 109-121
  • 37 Alshehri OM, Hughes CE, Montague S. , et al. Fibrin activates GPVI in human and mouse platelets. Blood 2015; 126 (13) 1601-1608
  • 38 Mammadova-Bach E, Ollivier V, Loyau S. , et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood 2015; 126 (05) 683-691
  • 39 Induruwa I, Moroi M, Bonna A. , et al. Platelet collagen receptor Glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation. J Thromb Haemost 2018; 16 (02) 389-404
  • 40 Ebrahim M, Jamasbi J, Adler K. , et al. Dimeric glycoprotein VI binds to collagen but not to fibrin. Thromb Haemost 2018; 118 (02) 351-361
  • 41 Gawaz M. Novel ligands for platelet glycoprotein VI. Thromb Haemost 2018; 118 (03) 435-436
  • 42 Godyna S, Diaz-Ricart M, Argraves WS. Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood 1996; 88 (07) 2569-2577
  • 43 Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11 (04) 288-300
  • 44 Duerschmied D, Bode C. The role of serotonin in haemostasis. [in German]. Hamostaseologie 2009; 29 (04) 356-359
  • 45 Bouchard BA, Catcher CS, Thrash BR, Adida C, Tracy PB. Effector cell protease receptor-1, a platelet activation-dependent membrane protein, regulates prothrombinase-catalyzed thrombin generation. J Biol Chem 1997; 272 (14) 9244-9251
  • 46 Mann KG. Biochemistry and physiology of blood coagulation. Thromb Haemost 1999; 82 (02) 165-174
  • 47 Mann KG. Thrombin generation in hemorrhage control and vascular occlusion. Circulation 2011; 124 (02) 225-235
  • 48 Nieswandt B, Aktas B, Moers A, Sachs UJ. Platelets in atherothrombosis: lessons from mouse models. J Thromb Haemost 2005; 3 (08) 1725-1736
  • 49 Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 2008; 28 (03) 403-412
  • 50 Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999; 103 (06) 879-887
  • 51 Coughlin SR. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 2005; 3 (08) 1800-1814
  • 52 Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med 2011; 17 (11) 1423-1436
  • 53 Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 1990; 82 (3, Suppl): II47-II59
  • 54 Fuster V, Moreno PR, Fayad ZA, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 2005; 46 (06) 937-954
  • 55 Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17 (11) 1410-1422
  • 56 Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 1996; 87 (10) 4235-4244
  • 57 Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lämmle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood 1997; 89 (09) 3097-3103
  • 58 Reininger AJ. The function of ultra-large von Willebrand factor multimers in high shear flow controlled by ADAMTS13. Hamostaseologie 2015; 35 (03) 225-233
  • 59 Furlan M, Robles R, Galbusera M. , et al. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 1998; 339 (22) 1578-1584
  • 60 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339 (22) 1585-1594
  • 61 Schaller M, Studt JD, Voorberg J, Kremer Hovinga JA. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie 2013; 33 (02) 121-130
  • 62 Mansouri Taleghani M, von Krogh AS, Fujimura Y. , et al. Hereditary thrombotic thrombocytopenic purpura and the hereditary TTP registry. Hamostaseologie 2013; 33 (02) 138-143
  • 63 McEver RP, Cummings RD. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 1997; 100 (11, Suppl): S97-S103
  • 64 Shebuski RJ, Kilgore KS. Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther 2002; 300 (03) 729-735
  • 65 Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 1993; 74 (03) 541-554
  • 66 Subramaniam M, Saffaripour S, Watson SR, Mayadas TN, Hynes RO, Wagner DD. Reduced recruitment of inflammatory cells in a contact hypersensitivity response in P-selectin-deficient mice. J Exp Med 1995; 181 (06) 2277-2282
  • 67 Heeschen C, Dimmeler S, Hamm CW. , et al; CAPTURE Study Investigators. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003; 348 (12) 1104-1111
  • 68 André P, Prasad KS, Denis CV. , et al. CD40L stabilizes arterial thrombi by a β3 integrin--dependent mechanism. Nat Med 2002; 8 (03) 247-252
  • 69 Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci U S A 2003; 100 (21) 12367-12371
  • 70 Ivanciu L, Stalker TJ. Spatiotemporal regulation of coagulation and platelet activation during the hemostatic response in vivo. J Thromb Haemost 2015; 13 (11) 1949-1959