Thromb Haemost 2018; 118(08): 1352-1369
DOI: 10.1055/s-0038-1666860
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Inflammasome, T Lymphocytes and Innate-Adaptive Immunity Crosstalk: Role in Cardiovascular Disease and Therapeutic Perspectives

Daniela Pedicino*
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Ada Francesca Giglio*
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Aureliano Ruggio
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Gianluca Massaro
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Alessia D'Aiello
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Francesco Trotta
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Claudia Lucci
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Francesca Graziani
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Luigi Marzio Biasucci
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Filippo Crea**
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
,
Giovanna Liuzzo**
1   Department of Cardiovascular and Thoracic Sciences, IRCCS-Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
› Institutsangaben
Funding This work was partially supported by the Catholic University of the Sacred Heart, Rome, Italy [Grant R4124500186 LINEA D.1 2014 and Grant R4124500458 LINEA D.1 2016].
Weitere Informationen

Publikationsverlauf

13. November 2017

22. Mai 2018

Publikationsdatum:
10. Juli 2018 (online)

Abstract

Over the past few decades, lot of evidences have shown atherosclerosis as a chronic progressive disease with an exquisite inflammatory feature. More recently, the role of innate immune response in the onset and progression of coronary artery disease (CAD) and an adaptive immunity imbalance, mostly involving T cell sub-sets, have been documented. Therefore, like in many other inflammatory and autoimmune disorders, an altered innate-adaptive immunity crosstalk could represent the key of the inflammatory burden leading to atherosclerotic plaque formation and progression and to the breakdown of plaque stability. In this review, we will address the role of inflammasome in innate immunity and in the imbalance of adaptive immunity. We will discuss how this altered immune crosstalk is related to CAD onset and progression. We will also discuss how unravelling the key molecular mechanisms is of paramount importance in the development of therapeutic tools to delay the chronic progression and prevent the acute destabilization of atherosclerotic plaque.

* Daniela Pedicino and Ada Francesca Giglio have contributed equally.


** Filippo Crea and Giovanna Liuzzo have contributed equally.


 
  • References

  • 1 Guarda G, So A. Regulation of inflammasome activity. Immunology 2010; 130 (03) 329-336
  • 2 Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010; 327 (5963): 291-295
  • 3 Eisenbarth SC, Flavell RA. Innate instruction of adaptive immunity revisited: the inflammasome. EMBO Mol Med 2009; 1 (02) 92-98
  • 4 Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002; 10 (02) 417-426
  • 5 Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev 2015; 265 (01) 6-21
  • 6 Masters SL. Specific inflammasomes in complex diseases. Clin Immunol 2013; 147 (03) 223-228
  • 7 Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10 (12) 826-837
  • 8 Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol 2017; 17 (03) 151-164
  • 9 Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 2006; 8 (11) 1812-1825
  • 10 Liu X, Zhang Z, Ruan J. , et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016; 535 (7610): 153-158
  • 11 Kanneganti TD. Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 2010; 10 (10) 688-698
  • 12 Levinsohn JL, Newman ZL, Hellmich KA. , et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog 2012; 8 (03) e1002638
  • 13 Shaw PJ, Lamkanfi M, Kanneganti TD. NOD-like receptor (NLR) signaling beyond the inflammasome. Eur J Immunol 2010; 40 (03) 624-627
  • 14 Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity 2011; 34 (05) 665-679
  • 15 Mariathasan S, Newton K, Monack DM. , et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004; 430 (6996): 213-218
  • 16 Suzuki T, Franchi L, Toma C. , et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007; 3 (08) e111
  • 17 Bauernfeind F, Hornung V. Of inflammasomes and pathogens--sensing of microbes by the inflammasome. EMBO Mol Med 2013; 5 (06) 814-826
  • 18 Man SM, Kanneganti TD. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol 2016; 16 (01) 7-21
  • 19 Creagh EM. Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 2014; 35 (12) 631-640
  • 20 Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012; 481 (7381): 278-286
  • 21 Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity 2013; 39 (06) 1003-1018
  • 22 Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27: 519-550
  • 23 Bauernfeind FG, Horvath G, Stutz A. , et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009; 183 (02) 787-791
  • 24 Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 2015; 265 (01) 35-52
  • 25 Song N, Liu ZS, Xue W. , et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell 2017; 68 (01) 185-197.e6
  • 26 He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016; 530 (7590): 354-357
  • 27 He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016; 41 (12) 1012-1021
  • 28 Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ Res 2014; 115 (10) 875-883
  • 29 Xiao H, Lu M, Lin TY. , et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 2013; 128 (06) 632-642
  • 30 Li X, Thome S, Ma X. , et al. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nat Commun 2017; 8: 15986
  • 31 Wright SD, Burton C, Hernandez M. , et al. Infectious agents are not necessary for murine atherogenesis. J Exp Med 2000; 191 (08) 1437-1442
  • 32 Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010; 2010 :pii: 672395 DOI: 10.1155/2010/672395.
  • 33 Duewell P, Kono H, Rayner KJ. , et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464 (7293): 1357-1361
  • 34 Waehre T, Yndestad A, Smith C. , et al. Increased expression of interleukin-1 in coronary artery disease with downregulatory effects of HMG-CoA reductase inhibitors. Circulation 2004; 109 (16) 1966-1972
  • 35 Mallat Z, Henry P, Fressonnet R. , et al. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart 2002; 88 (05) 467-469
  • 36 Shimpo M, Morrow DA, Weinberg EO. , et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 2004; 109 (18) 2186-2190
  • 37 Blankenberg S, McQueen MJ, Smieja M. , et al; HOPE Study Investigators. Comparative impact of multiple biomarkers and N-Terminal pro-brain natriuretic peptide in the context of conventional risk factors for the prediction of recurrent cardiovascular events in the Heart Outcomes Prevention Evaluation (HOPE) Study. Circulation 2006; 114 (03) 201-208
  • 38 Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006; 86 (02) 515-581
  • 39 Afrasyab A, Qu P, Zhao Y. , et al. Correlation of NLRP3 with severity and prognosis of coronary atherosclerosis in acute coronary syndrome patients. Heart Vessels 2016; 31 (08) 1218-1229
  • 40 Olofsson PS, Sheikine Y, Jatta K. , et al. A functional interleukin-1 receptor antagonist polymorphism influences atherosclerosis development. The interleukin-1beta:interleukin-1 receptor antagonist balance in atherosclerosis. Circ J 2009; 73 (08) 1531-1536
  • 41 Persson J, Nilsson J, Lindholm MW. Interleukin-1beta and tumour necrosis factor-alpha impede neutral lipid turnover in macrophage-derived foam cells. BMC Immunol 2008; 9: 70
  • 42 Rajamäki K, Lappalainen J, Oörni K. , et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 2010; 5 (07) e11765
  • 43 Liu W, Yin Y, Zhou Z, He M, Dai Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res 2014; 63 (01) 33-43
  • 44 Sheedy FJ, Grebe A, Rayner KJ. , et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013; 14 (08) 812-820
  • 45 Stachon P, Heidenreich A, Merz J. , et al. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation 2017; 135 (25) 2524-2533
  • 46 Samstad EO, Niyonzima N, Nymo S. , et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol 2014; 192 (06) 2837-2845
  • 47 Triantafilou M, Hughes TR, Morgan BP, Triantafilou K. Complementing the inflammasome. Immunology 2016; 147 (02) 152-164
  • 48 Triantafilou K, Hughes TR, Triantafilou M, Morgan BP. The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci 2013; 126 (Pt 13): 2903-2913
  • 49 Benoit ME, Clarke EV, Morgado P, Fraser DA, Tenner AJ. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J Immunol 2012; 188 (11) 5682-5693
  • 50 Pedicino D, Giglio AF, Galiffa VA. , et al. Infections, immunity and atherosclerosis: pathogenic mechanisms and unsolved questions. Int J Cardiol 2013; 166 (03) 572-583
  • 51 Alexander MR, Moehle CW, Johnson JL. , et al. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest 2012; 122 (01) 70-79
  • 52 Menu P, Pellegrin M, Aubert JF. , et al. Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis 2011; 2: e137
  • 53 Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 2017; 267: 127-138
  • 54 Mallat Z, Corbaz A, Scoazec A. , et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 2001; 104 (14) 1598-1603
  • 55 Mallat Z, Corbaz A, Scoazec A. , et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 2001; 89 (07) E41-E45
  • 56 Elhage R, Jawien J, Rudling M. , et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 2003; 59 (01) 234-240
  • 57 Zirlik A, Abdullah SM, Gerdes N. , et al. Interleukin-18, the metabolic syndrome, and subclinical atherosclerosis: results from the Dallas Heart Study. Arterioscler Thromb Vasc Biol 2007; 27 (09) 2043-2049
  • 58 Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J 2016; 37 (25) 1959-1967
  • 59 Niccoli G, Liuzzo G, Montone RA, Crea F. Advances in mechanisms, imaging and management of the unstable plaque. Atherosclerosis 2014; 233 (02) 467-477
  • 60 Liuzzo G, Giubilato G, Pinnelli M. T cells and cytokines in atherogenesis. Lupus 2005; 14 (09) 732-735
  • 61 Liuzzo G, Biasucci LM, Gallimore JR. , et al. The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 1994; 331 (07) 417-424
  • 62 Abbate A, Biondi-Zoccai GG, Brugaletta S, Liuzzo G, Biasucci LM. C-reactive protein and other inflammatory biomarkers as predictors of outcome following acute coronary syndromes. Semin Vasc Med 2003; 3 (04) 375-384
  • 63 Pedicino D, Severino A, Ucci S. , et al. Epicardial adipose tissue microbial colonization and inflammasome activation in acute coronary syndrome. Int J Cardiol 2017; 236: 95-99
  • 64 Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid Redox Signal 2015; 22 (13) 1146-1161
  • 65 Frantz S, Ducharme A, Sawyer D. , et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction. J Mol Cell Cardiol 2003; 35 (06) 685-694
  • 66 Venkatachalam K, Prabhu SD, Reddy VS, Boylston WH, Valente AJ, Chandrasekar B. Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J Biol Chem 2009; 284 (12) 7853-7865
  • 67 Buffon A, Biasucci LM, Liuzzo G, D'Onofrio G, Crea F, Maseri A. Widespread coronary inflammation in unstable angina. N Engl J Med 2002; 347 (01) 5-12
  • 68 Narducci ML, Grasselli A, Biasucci LM. , et al. High telomerase activity in neutrophils from unstable coronary plaques. J Am Coll Cardiol 2007; 50 (25) 2369-2374
  • 69 Biasucci LM, Liuzzo G, Giubilato S. , et al. Delayed neutrophil apoptosis in patients with unstable angina: relation to C-reactive protein and recurrence of instability. Eur Heart J 2009; 30 (18) 2220-2225
  • 70 Ferrante G, Nakano M, Prati F. , et al. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study. Circulation 2010; 122 (24) 2505-2513
  • 71 Franck G, Mawson T, Sausen G. , et al. Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: implications for superficial erosion. Circ Res 2017; 121 (01) 31-42
  • 72 Libby P, Nahrendorf M, Pittet MJ, Swirski FK. Diversity of denizens of the atherosclerotic plaque: not all monocytes are created equal. Circulation 2008; 117 (25) 3168-3170
  • 73 Hilgendorf I, Swirski FK, Robbins CS. Monocyte fate in atherosclerosis. Arterioscler Thromb Vasc Biol 2015; 35 (02) 272-279
  • 74 Tsujioka H, Imanishi T, Ikejima H. , et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 2009; 54 (02) 130-138
  • 75 Wyss CA, Neidhart M, Altwegg L. , et al. Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes. Eur Heart J 2010; 31 (12) 1457-1469
  • 76 Niessner A, Shin MS, Pryshchep O, Goronzy JJ, Chaikof EL, Weyand CM. Synergistic proinflammatory effects of the antiviral cytokine interferon-alpha and Toll-like receptor 4 ligands in the atherosclerotic plaque. Circulation 2007; 116 (18) 2043-2052
  • 77 Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: the renaissance cell. Circ Res 2009; 105 (12) 1164-1176
  • 78 Sandanger Ø, Ranheim T, Vinge LE. , et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 2013; 99 (01) 164-174
  • 79 Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM. Inflammation in myocardial diseases. Circ Res 2012; 110 (01) 126-144
  • 80 Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci U S A 2001; 98 (05) 2871-2876
  • 81 Mallat Z, Heymes C, Corbaz A. , et al. Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J 2004; 18 (14) 1752-1754
  • 82 Kawaguchi M, Takahashi M, Hata T. , et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011; 123 (06) 594-604
  • 83 Marchetti C, Chojnacki J, Toldo S. , et al. A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol 2014; 63 (04) 316-322
  • 84 Ding Z, Liu S, Wang X. , et al. LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovasc Res 2014; 103 (04) 619-628
  • 85 Liu SJ, Zhou W, Kennedy RH. Suppression of beta-adrenergic responsiveness of L-type Ca2+ current by IL-1beta in rat ventricular myocytes. Am J Physiol 1999; 276 (1 Pt 2): H141-H148
  • 86 Chung MK, Gulick TS, Rotondo RE, Schreiner GF, Lange LG. Mechanism of cytokine inhibition of beta-adrenergic agonist stimulation of cyclic AMP in rat cardiac myocytes. Impairment of signal transduction. Circ Res 1990; 67 (03) 753-763
  • 87 McTiernan CF, Lemster BH, Frye C, Brooks S, Combes A, Feldman AM. Interleukin-1 beta inhibits phospholamban gene expression in cultured cardiomyocytes. Circ Res 1997; 81 (04) 493-503
  • 88 Tsujino M, Hirata Y, Imai T. , et al. Induction of nitric oxide synthase gene by interleukin-1 beta in cultured rat cardiocytes. Circulation 1994; 90 (01) 375-383
  • 89 van Hout GP, Bosch L, Ellenbroek GH. , et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 2017; 38 (11) 828-836
  • 90 Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A 2009; 106 (22) 9021-9026
  • 91 Seki K, Sanada S, Kudinova AY. , et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail 2009; 2 (06) 684-691
  • 92 Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK. Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 1985; 76 (01) 125-131
  • 93 Ketelhuth DF, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. Thromb Haemost 2011; 106 (05) 779-786
  • 94 Flego D, Liuzzo G, Weyand CM, Crea F. Adaptive immunity dysregulation in acute coronary syndromes: from cellular and molecular basis to clinical implications. J Am Coll Cardiol 2016; 68 (19) 2107-2117
  • 95 Liuzzo G, Biasucci LM, Trotta G. , et al. Unusual CD4+CD28null T lymphocytes and recurrence of acute coronary events. J Am Coll Cardiol 2007; 50 (15) 1450-1458
  • 96 Liuzzo G, Montone RA, Gabriele M. , et al. Identification of unique adaptive immune system signature in acute coronary syndromes. Int J Cardiol 2013; 168 (01) 564-567
  • 97 Zhou X, Robertson AK, Rudling M, Parini P, Hansson GK. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res 2005; 96 (04) 427-434
  • 98 Buono C, Binder CJ, Stavrakis G, Witztum JL, Glimcher LH, Lichtman AH. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci U S A 2005; 102 (05) 1596-1601
  • 99 Buono C, Come CE, Stavrakis G, Maguire GF, Connelly PW, Lichtman AH. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 2003; 23 (03) 454-460
  • 100 King VL, Szilvassy SJ, Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- mice. Arterioscler Thromb Vasc Biol 2002; 22 (03) 456-461
  • 101 Binder CJ, Hartvigsen K, Chang MK. , et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004; 114 (03) 427-437
  • 102 de Boer OJ, van der Meer JJ, Teeling P, van der Loos CM, van der Wal AC. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One 2007; 2 (08) e779
  • 103 Xiong Z, Song J, Yan Y. , et al. Higher expression of Bax in regulatory T cells increases vascular inflammation. Front Biosci 2008; 13: 7143-7155
  • 104 Ait-Oufella H, Salomon BL, Potteaux S. , et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006; 12 (02) 178-180
  • 105 Mor A, Planer D, Luboshits G. , et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (04) 893-900
  • 106 Mallat Z, Gojova A, Brun V. , et al. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003; 108 (10) 1232-1237
  • 107 Mallat Z, Besnard S, Duriez M. , et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85 (08) e17-e24
  • 108 Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 2003; 112 (09) 1342-1350
  • 109 Liu Z, Lu F, Pan H. , et al. Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis 2012; 221 (01) 232-241
  • 110 Erbel C, Dengler TJ, Wangler S. , et al. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res Cardiol 2011; 106 (01) 125-134
  • 111 Cheng X, Yu X, Ding YJ. , et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 2008; 127 (01) 89-97
  • 112 Zhao Z, Wu Y, Cheng M. , et al. Activation of Th17/Th1 and Th1, but not Th17, is associated with the acute cardiac event in patients with acute coronary syndrome. Atherosclerosis 2011; 217 (02) 518-524
  • 113 Li Q, Wang Y, Chen K. , et al. The role of oxidized low-density lipoprotein in breaking peripheral Th17/Treg balance in patients with acute coronary syndrome. Biochem Biophys Res Commun 2010; 394 (03) 836-842
  • 114 Taleb S, Romain M, Ramkhelawon B. , et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 2009; 206 (10) 2067-2077
  • 115 Brauner S, Jiang X, Thorlacius GE. , et al. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovasc Res 2018; 114 (01) 158-167
  • 116 Simon T, Taleb S, Danchin N. , et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur Heart J 2013; 34 (08) 570-577
  • 117 Liuzzo G, Trotta F, Pedicino D. Interleukin-17 in atherosclerosis and cardiovascular disease: the good, the bad, and the unknown. Eur Heart J 2013; 34 (08) 556-559
  • 118 Giubilato S, Liuzzo G, Brugaletta S. , et al. Expansion of CD4+CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. Eur Heart J 2011; 32 (10) 1214-1226
  • 119 Flego D, Severino A, Trotta F. , et al. Altered CD31 expression and activity in helper T cells of acute coronary syndrome patients. Basic Res Cardiol 2014; 109 (06) 448
  • 120 Flego D, Severino A, Trotta F. , et al. Increased PTPN22 expression and defective CREB activation impair regulatory T-cell differentiation in non-ST-segment elevation acute coronary syndromes. J Am Coll Cardiol 2015; 65 (12) 1175-1186
  • 121 Sutterwala FS, Ogura Y, Szczepanik M. , et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 2006; 24 (03) 317-327
  • 122 Ghiringhelli F, Apetoh L, Tesniere A. , et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15 (10) 1170-1178
  • 123 Jin Y, Mailloux CM, Gowan K. , et al. NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med 2007; 356 (12) 1216-1225
  • 124 Brydges SD, Mueller JL, McGeough MD. , et al. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 2009; 30 (06) 875-887
  • 125 Meng G, Zhang F, Fuss I, Kitani A, Strober W. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 2009; 30 (06) 860-874
  • 126 Arbore G, West EE, Spolski R. , et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 2016; 352 (6292): aad1210
  • 127 Zielinski CE, Mele F, Aschenbrenner D. , et al. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 2012; 484 (7395): 514-518
  • 128 Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006; 203 (07) 1685-1691
  • 129 Cho ML, Kang JW, Moon YM. , et al. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 2006; 176 (09) 5652-5661
  • 130 Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A 2003; 100 (10) 5986-5990
  • 131 Inoue M, Williams KL, Gunn MD, Shinohara ML. NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2012; 109 (26) 10480-10485
  • 132 Koenders MI, Devesa I, Marijnissen RJ. , et al. Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Arthritis Rheum 2008; 58 (11) 3461-3470
  • 133 Mercer F, Kozhaya L, Unutmaz D. Expression and function of TNF and IL-1 receptors on human regulatory T cells. PLoS One 2010; 5 (01) e8639
  • 134 Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999; 103 (1 Pt 1): 11-24
  • 135 Beaulieu LM, Lin E, Mick E. , et al. Interleukin 1 receptor 1 and interleukin 1β regulate megakaryocyte maturation, platelet activation, and transcript profile during inflammation in mice and humans. Arterioscler Thromb Vasc Biol 2014; 34 (03) 552-564
  • 136 Shao BZ, Xu ZQ, Han BZ, Su DF, Liu C. NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 2015; 6: 262
  • 137 Bona RD, Liuzzo G, Pedicino D, Crea F. Anti-inflammatory treatment of acute coronary syndromes. Curr Pharm Des 2011; 17 (37) 4172-4189
  • 138 Crea F, Liuzzo G. Anti-inflammatory treatment of acute coronary syndromes: the need for precision medicine. Eur Heart J 2016; 37 (30) 2414-2416
  • 139 Morton AC, Rothman AM, Greenwood JP. , et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur Heart J 2015; 36 (06) 377-384
  • 140 Abbate A, Kontos MC, Grizzard JD. , et al; VCU-ART Investigators. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am J Cardiol 2010; 105 (10) 1371-1377.e1
  • 141 Abbate A, Van Tassell BW, Biondi-Zoccai G. , et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol 2013; 111 (10) 1394-1400
  • 142 Abbate A, Salloum FN, Vecile E. , et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 2008; 117 (20) 2670-2683
  • 143 Available at: http://clinicaltrials.gov ; (NCT01950299) Interleukin- 1 (IL-1) Blockade in Acute Myocardial Infarction (VCU-ART3). Accessed June 20, 2018
  • 144 Ikonomidis I, Lekakis JP, Nikolaou M. , et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 2008; 117 (20) 2662-2669
  • 145 Van Tassell BW, Arena RA, Toldo S. , et al. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One 2012; 7 (03) e33438
  • 146 Van Tassell BW, Arena R, Biondi-Zoccai G. , et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am J Cardiol 2014; 113 (02) 321-327
  • 147 Van Tassell BW, Canada J, Carbone S. , et al. Interleukin-1 Blockade in Recently Decompensated Systolic Heart Failure: Results From REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ Heart Fail 2017; 10 (11) pii: e004373
  • 148 Available at: http://clinicaltrials.gov (NCT02173548). Accessed June 20, 2018
  • 149 Ridker PM, Everett BM, Thuren T. , et al; CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 2017; 377 (12) 1119-1131
  • 150 Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. ; CANTOS Trial Group. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 2018; 391 (10118): 319-328
  • 151 Harrington RA. Targeting inflammation in coronary artery disease. N Engl J Med 2017; 377 (12) 1197-1198