J Pediatr Infect Dis 2019; 14(02): 069-078
DOI: 10.1055/s-0038-1660818
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Biofilm Biology and Vaccine Strategies for Otitis Media Due to Nontypeable Haemophilus influenzae

Laura A. Novotny
1   Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
Kenneth L. Brockman
1   Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
Elaine M. Mokrzan
1   Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
Joseph A. Jurcisek
1   Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
Lauren O. Bakaletz
1   Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
› Author Affiliations
Further Information

Publication History

08 August 2017

29 March 2018

Publication Date:
06 July 2018 (online)


Otitis media (OM) is one of the most common diseases of childhood, and nontypeable Haemophilus influenzae (NTHI) is the predominant causative agent of chronic and recurrent OM, as well as OM for which treatment has failed. Moreover, NTHI is now as important a causative agent of acute OM as the pneumococcus. NTHI colonizes the human nasopharynx asymptomatically. However, upon perturbation of the innate and physical defenses of the airway by upper respiratory tract viral infection, NTHI can replicate, ascend the Eustachian tube, gain access to the normally sterile middle ear space, and cause disease. Bacterial biofilms within the middle ear, including those formed by NTHI, contribute to the chronic and recurrent nature of this disease. These multicomponent structures are highly resistant to clearance by host defenses and elimination by traditional antimicrobial therapies. Herein, we review several strategies utilized by NTHI to persist within the human host and interventions currently under investigation to prevent and/or resolve NTHI-induced diseases of the middle ear and uppermost airway.

Competing Interest

L.A.N., K.L.B., E.M.M., and J.A.J. have no competing interests. L.O.B. is an inventor of technology related to PilA-derived immunogens, which is licensed to GlaxoSmithKline Biologicals. L.O.B. is an inventor of technology related to the DNABII proteins.

  • References

  • 1 Pichichero ME. Otitis media. Pediatr Clin North Am 2013; 60 (02) 391-407
  • 2 Baldwin RL. Effects of otitis media on child development. Am J Otol 1993; 14 (06) 601-604
  • 3 Hunter LL, Margolis RH, Giebink GS. Identification of hearing loss in children with otitis media. Ann Otol Rhinol Laryngol Suppl 1994; 163: 59-61
  • 4 Johnson DL, McCormick DP, Baldwin CD. Early middle ear effusion and language at age seven. J Commun Disord 2008; 41 (01) 20-32
  • 5 Li SF, Kumar A, Thomas S. , et al. Safety and efficacy of intravenous combination sedatives in the ED. Am J Emerg Med 2013; 31 (09) 1402-1404
  • 6 Casey JR, Adlowitz DG, Pichichero ME. New patterns in the otopathogens causing acute otitis media six to eight years after introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 2010; 29 (04) 304-309
  • 7 American Academy of Family Physicians; American Academy of Otolaryngology-Head and Neck Surgery; American Academy of Pediatrics Subcommittee on Otitis Media With Effusion. Otitis media with effusion. Pediatrics 2004; 113 (05) 1412-1429
  • 8 Høiby N, Bjarnsholt T, Moser C. , et al; ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 2015; 21 (Suppl. 01) S1-S25
  • 9 Leibovitz E, Broides A, Greenberg D, Newman N. Current management of pediatric acute otitis media. Expert Rev Anti Infect Ther 2010; 8 (02) 151-161
  • 10 Donnelly JP, Baddley JW, Wang HE. Antibiotic utilization for acute respiratory tract infections in U.S. emergency departments. Antimicrob Agents Chemother 2014; 58 (03) 1451-1457
  • 11 Grijalva CG, Nuorti JP, Griffin MR. Antibiotic prescription rates for acute respiratory tract infections in US ambulatory settings. JAMA 2009; 302 (07) 758-766
  • 12 Song JH, Dagan R, Klugman KP, Fritzell B. The relationship between pneumococcal serotypes and antibiotic resistance. Vaccine 2012; 30 (17) 2728-2737
  • 13 Monasta L, Ronfani L, Marchetti F. , et al. Burden of disease caused by otitis media: systematic review and global estimates. PLoS One 2012; 7 (04) e36226
  • 14 Rosenfeld RM, Schwartz SR, Pynnonen MA. , et al. Clinical practice guideline: Tympanostomy tubes in children. Otolaryngol Head Neck Surg 2013; 149 (1, Suppl): S1-S35
  • 15 Hochman J, Blakley B, Abdoh A, Aleid H. Post-tympanostomy tube otorrhea: a meta-analysis. Otolaryngol Head Neck Surg 2006; 135 (01) 8-11
  • 16 Oberman JP, Derkay CS. Posttympanostomy tube otorrhea. Am J Otolaryngol 2004; 25 (02) 110-117
  • 17 Idicula WK, Jurcisek JA, Cass ND. , et al. Identification of biofilms in post-tympanostomy tube otorrhea. Laryngoscope 2016; 126 (08) 1946-1951
  • 18 Syed MI, Suller S, Browning GG, Akeroyd MA. Interventions for the prevention of postoperative ear discharge after insertion of ventilation tubes (grommets) in children. Cochrane Database Syst Rev 2013; (04) CD008512
  • 19 Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284 (5418): 1318-1322
  • 20 Sauer K. The genomics and proteomics of biofilm formation. Genome Biol 2003; 4 (06) 219
  • 21 Bakaletz LO. Bacterial biofilms in the upper airway - evidence for role in pathology and implications for treatment of otitis media. Paediatr Respir Rev 2012; 13 (03) 154-159
  • 22 Hall-Stoodley L, Hu FZ, Gieseke A. , et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006; 296 (02) 202-211
  • 23 Post JC. Direct evidence of bacterial biofilms in otitis media. 2001. Laryngoscope 2015; 125 (09) 2003-2014
  • 24 Flemming HC. EPS-Then and Now. Microorganisms 2016; 4 (04) E41
  • 25 Gunn JS, Bakaletz LO, Wozniak DJ. What's on the outside matters: the role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J Biol Chem 2016; 291 (24) 12538-12546
  • 26 Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73 (02) 310-347
  • 27 Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002; 295 (5559): 1487
  • 28 Greiner LL, Watanabe H, Phillips NJ. , et al. Nontypeable Haemophilus influenzae strain 2019 produces a biofilm containing N-acetylneuraminic acid that may mimic sialylated O-linked glycans. Infect Immun 2004; 72 (07) 4249-4260
  • 29 Jurcisek JA, Bakaletz LO. Biofilms formed by nontypeable Haemophilus influenzae in vivo contain both double-stranded DNA and type IV pilin protein. J Bacteriol 2007; 189 (10) 3868-3875
  • 30 Murphy TF, Kirkham C, Sethi S, Lesse AJ. Expression of a peroxiredoxin-glutaredoxin by Haemophilus influenzae in biofilms and during human respiratory tract infection. FEMS Immunol Med Microbiol 2005; 44 (01) 81-89
  • 31 Gallaher TK, Wu S, Webster P, Aguilera R. Identification of biofilm proteins in non-typeable Haemophilus Influenzae. BMC Microbiol 2006; 6: 65
  • 32 Webster P, Wu S, Gomez G, Apicella M, Plaut AG, St Geme III JW. Distribution of bacterial proteins in biofilms formed by non-typeable Haemophilus influenzae. J Histochem Cytochem 2006; 54 (07) 829-842
  • 33 Wu S, Baum MM, Kerwin J. , et al. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae. Pathog Dis 2014; 72 (03) 143-160
  • 34 Nuri R, Shprung T, Shai Y. Defensive remodeling: how bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides. Biochim Biophys Acta 2015; 1848 (11 Pt B): 3089-3100
  • 35 Goodman SD, Obergfell KP, Jurcisek JA. , et al. Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol 2011; 4 (06) 625-637
  • 36 Swinger KK, Rice PA. Structure-based analysis of HU-DNA binding. J Mol Biol 2007; 365 (04) 1005-1016
  • 37 Swinger KK, Rice PA. IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 2004; 14 (01) 28-35
  • 38 Rice PA, Yang S, Mizuuchi K, Nash HA. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 1996; 87 (07) 1295-1306
  • 39 Goodman SD, Nash HA. Functional replacement of a protein-induced bend in a DNA recombination site. Nature 1989; 341 (6239): 251-254
  • 40 Goodman SD, Nicholson SC, Nash HA. Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. Proc Natl Acad Sci U S A 1992; 89 (24) 11910-11914
  • 41 Kamashev D, Rouviere-Yaniv J. The histone-like protein HU binds specifically to DNA recombination and repair intermediates. EMBO J 2000; 19 (23) 6527-6535
  • 42 Brockson ME, Novotny LA, Mokrzan EM. , et al. Evaluation of the kinetics and mechanism of action of anti-integration host factor-mediated disruption of bacterial biofilms. Mol Microbiol 2014; 93 (06) 1246-1258
  • 43 Webb P. Air temperatures in respiratory tracts of resing subjects in cold. J Appl Physiol 1951; 4 (05) 378-382
  • 44 Keck T, Leiacker R, Riechelmann H, Rettinger G. Temperature profile in the nasal cavity. Laryngoscope 2000; 110 (04) 651-654
  • 45 Brunworth JD, Mahboubi H, Garg R, Johnson B, Brandon B, Djalilian HR. Nasopharyngeal acid reflux and Eustachian tube dysfunction in adults. Ann Otol Rhinol Laryngol 2014; 123 (06) 415-419
  • 46 Nuutinen J, Torkkeli T, Penttilä I. The pH of secretions in sinusitis and otitis media. J Otolaryngol 1993; 22 (02) 79-82
  • 47 Wezyk MT, Makowski A. pH of fluid collected from middle ear in the course of otitis media in children [Article in Polish]. Otolaryngol Pol 2000; 54 (02) 131-133
  • 48 Marks LR, Davidson BA, Knight PR, Hakansson AP. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio 2013; 4 (04) e00438-13
  • 49 Marks LR, Reddinger RM, Hakansson AP. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. MBio 2012; 3 (05) e00200-12
  • 50 Jurcisek JA, Bookwalter JE, Baker BD. , et al. The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol Microbiol 2007; 65 (05) 1288-1299
  • 51 Bakaletz LO, Baker BD, Jurcisek JA. , et al. Demonstration of type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005; 73 (03) 1635-1643
  • 52 Jurcisek JA, Novotny LA, Armbruster C, Swords WE, Bakaletz LO. Targeting a Haemophilus influenzae protein expressed during biofilm growth in vivo for development of a vaccine for otitis media. Paper presented at: 5th ASM Conference on Biofilms; November 15–19; 2009; Cancun, Mexico
  • 53 Novotny LA, Bakaletz LO. Intercellular adhesion molecule 1 serves as a primary cognate receptor for the Type IV pilus of nontypeable Haemophilus influenzae. Cell Microbiol 2016; 18 (08) 1043-1055
  • 54 Carruthers MD, Tracy EN, Dickson AC, Ganser KB, Munson Jr RS, Bakaletz LO. Biological roles of nontypeable Haemophilus influenzae type IV pilus proteins encoded by the pil and com operons. J Bacteriol 2012; 194 (08) 1927-1933
  • 55 Mokrzan EM, Ward MO, Bakaletz LO. Type IV pilus expression is upregulated in nontypeable Haemophilus influenzae biofilms formed at the temperature of the human nasopharynx. J Bacteriol 2016; 198 (19) 2619-2630
  • 56 Papenfort K, Bassler BL. Quorum sensing signal-response systems in gram-negative bacteria. Nat Rev Microbiol 2016; 14 (09) 576-588
  • 57 Novotny LA, Jurcisek JA, Ward Jr MO, Jordan ZB, Goodman SD, Bakaletz LO. Antibodies against the majority subunit of type IV Pili disperse nontypeable Haemophilus influenzae biofilms in a LuxS-dependent manner and confer therapeutic resolution of experimental otitis media. Mol Microbiol 2015; 96 (02) 276-292
  • 58 Tikhomirova A, Trappetti C, Paton JC, Kidd SP. The outcome of H. influenzae and S. pneumoniae inter-species interactions depends on pH, nutrient availability and growth phase. Int J Med Microbiol 2015; 305 (08) 881-892
  • 59 Szelestey BR, Heimlich DR, Raffel FK, Justice SS, Mason KM. Haemophilus responses to nutritional immunity: epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity. PLoS Pathog 2013; 9 (10) e1003709
  • 60 Harrison A, Dyer DW, Gillaspy A. , et al. Genomic sequence of an otitis media isolate of nontypeable Haemophilus influenzae: comparative study with H. influenzae serotype d, strain KW20. J Bacteriol 2005; 187 (13) 4627-4636
  • 61 Harrison A, Ray WC, Baker BD, Armbruster DW, Bakaletz LO, Munson Jr RS. The OxyR regulon in nontypeable Haemophilus influenzae. J Bacteriol 2007; 189 (03) 1004-1012
  • 62 Whitby PW, Morton DJ, Vanwagoner TM. , et al. Haemophilus influenzae OxyR: characterization of its regulation, regulon and role in fitness. PLoS One 2012; 7 (11) e50588
  • 63 Harrison A, Santana EA, Szelestey BR, Newsom DE, White P, Mason KM. Ferric uptake regulator and its role in the pathogenesis of nontypeable Haemophilus influenzae. Infect Immun 2013; 81 (04) 1221-1233
  • 64 Zhou K, Aertsen A, Michiels CW. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 2014; 38 (01) 119-141
  • 65 Winter LE, Barenkamp SJ. Antibodies to the HMW1/HMW2 and Hia adhesins of nontypeable Haemophilus influenzae mediate broad-based opsonophagocytic killing of homologous and heterologous strains. Clin Vaccine Immunol 2014; 21 (05) 613-621
  • 66 Winter LE, Barenkamp SJ. Antibodies specific for the Hia adhesion proteins of nontypeable Haemophilus influenzae mediate opsonophagocytic activity. Clin Vaccine Immunol 2009; 16 (07) 1040-1046
  • 67 Atack JM, Winter LE, Jurcisek JA, Bakaletz LO, Barenkamp SJ, Jennings MP. Selection and counterselection of Hia expression reveals a key role for phase-variable expression of Hia in infection caused by nontypeable Haemophilus influenzae. J Infect Dis 2015; 212 (04) 645-653
  • 68 Davis GS, Marino S, Marrs CF, Gilsdorf JR, Dawid S, Kirschner DE. Phase variation and host immunity against high molecular weight (HMW) adhesins shape population dynamics of nontypeable Haemophilus influenzae within human hosts. J Theor Biol 2014; 355: 208-218
  • 69 Giufrè M, Carattoli A, Cardines R, Mastrantonio P, Cerquetti M. Variation in expression of HMW1 and HMW2 adhesins in invasive nontypeable Haemophilus influenzae isolates. BMC Microbiol 2008; 8: 83
  • 70 Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A 2005; 102 (15) 5547-5551
  • 71 Atack JM, Srikhanta YN, Fox KL. , et al. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae. Nat Commun 2015; 6: 7828
  • 72 Brockman KL, Jurcisek JA, Atack JM, Srikhanta YN, Jennings MP, Bakaletz LO. ModA2 phasevarion switching in nontypeable Haemophilus influenzae increases the severity of experimental otitis media. J Infect Dis 2016; 214 (05) 817-824
  • 73 Dagan R, Pelton S, Bakaletz L, Cohen R. Prevention of early episodes of otitis media by pneumococcal vaccines might reduce progression to complex disease. Lancet Infect Dis 2016; 16 (04) 480-492
  • 74 Ben-Shimol S, Givon-Lavi N, Leibovitz E, Raiz S, Greenberg D, Dagan R. Impact of widespread introduction of pneumococcal conjugate vaccines on pneumococcal and nonpneumococcal otitis media. Clin Infect Dis 2016; 63 (05) 611-618
  • 75 Marom T, Nokso-Koivisto J, Chonmaitree T. Viral-bacterial interactions in acute otitis media. Curr Allergy Asthma Rep 2012; 12 (06) 551-558
  • 76 Murphy TF. Vaccines for nontypeable Haemophilus influenzae: the future is now. Clin Vaccine Immunol 2015; 22 (05) 459-466
  • 77 Prymula R, Peeters P, Chrobok V. , et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet 2006; 367 (9512): 740-748
  • 78 Ngo CC, Massa HM, Thornton RB, Cripps AW. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PLoS One 2016; 11 (03) e0150949
  • 79 Murphy TF. Respiratory infections caused by non-typeable Haemophilus influenzae. Curr Opin Infect Dis 2003; 16 (02) 129-134
  • 80 Murphy TF, Faden H, Bakaletz LO. , et al. Nontypeable Haemophilus influenzae as a pathogen in children. Pediatr Infect Dis J 2009; 28 (01) 43-48
  • 81 Swords WE. Nontypeable Haemophilus influenzae biofilms: role in chronic airway infections. Front Cell Infect Microbiol 2012; 2: 97
  • 82 Bakaletz LO. Bacterial biofilms in otitis media: evidence and relevance. Pediatr Infect Dis J 2007; 26 (10, Suppl): S17-S19
  • 83 Novotny LA, Adams LD, Kang DR. , et al. Epitope mapping immunodominant regions of the PilA protein of nontypeable Haemophilus influenzae (NTHI) to facilitate the design of two novel chimeric vaccine candidates. Vaccine 2009; 28 (01) 279-289
  • 84 Novotny LA, Bakaletz LO. The fourth surface-exposed region of the outer membrane protein P5-homologous adhesin of nontypable Haemophilus influenzae is an immunodominant but nonprotective decoying epitope. J Immunol 2003; 171 (04) 1978-1983
  • 85 Novotny LA, Jurcisek JA, Pichichero ME, Bakaletz LO. Epitope mapping of the outer membrane protein P5-homologous fimbrin adhesin of nontypeable Haemophilus influenzae. Infect Immun 2000; 68 (04) 2119-2128
  • 86 Novotny LA, Pichichero ME, Denoël PA. , et al. Detection and characterization of pediatric serum antibody to the OMP P5-homologous adhesin of nontypeable Haemophilus influenzae during acute otitis media. Vaccine 2002; 20 (29–30): 3590-3597
  • 87 Brandstetter KA, Jurcisek JA, Goodman SD, Bakaletz LO, Das S. Antibodies directed against integration host factor mediate biofilm clearance from Nasopore. Laryngoscope 2013; 123 (11) 2626-2632
  • 88 Devaraj A, Justice SS, Bakaletz LO, Goodman SD. DNABII proteins play a central role in UPEC biofilm structure. Mol Microbiol 2015; 96 (06) 1119-1135
  • 89 Freire MO, Devaraj A, Young A. , et al. A bacterial-biofilm-induced oral osteolytic infection can be successfully treated by immuno-targeting an extracellular nucleoid-associated protein. Mol Oral Microbiol 2017; 32 (01) 74-88
  • 90 Gustave JE, Jurcisek JA, McCoy KS, Goodman SD, Bakaletz LO. Targeting bacterial integration host factor to disrupt biofilms associated with cystic fibrosis. J Cyst Fibros 2013; 12 (04) 384-389
  • 91 Novotny LA, Amer AO, Brockson ME, Goodman SD, Bakaletz LO. Structural stability of Burkholderia cenocepacia biofilms is reliant on eDNA structure and presence of a bacterial nucleic acid binding protein. PLoS One 2013; 8 (06) e67629
  • 92 Novotny LA, Jurcisek JA, Goodman SD, Bakaletz LO. Monoclonal antibodies against DNA-binding tips of DNABII proteins disrupt biofilms in vitro and induce bacterial clearance in vivo. EBioMedicine 2016; 10: 33-44
  • 93 Rocco CJ, Davey ME, Bakaletz LO, Goodman SD. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics. Mol Oral Microbiol 2017; 32 (02) 118-130
  • 94 Mishra D, Mishra PK, Dubey V, Nahar M, Dabadghao S, Jain NK. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur J Pharm Sci 2008; 33 (4-5): 424-433
  • 95 Lawson LB, Clements JD, Freytag LC. Mucosal immune responses induced by transcutaneous vaccines. Curr Top Microbiol Immunol 2012; 354: 19-37
  • 96 Glenn GM, Scharton-Kersten T, Alving CR. Advances in vaccine delivery: transcutaneous immunisation. Expert Opin Investig Drugs 1999; 8 (06) 797-805
  • 97 Frech SA, Dupont HL, Bourgeois AL. , et al. Use of a patch containing heat-labile toxin from Escherichia coli against travellers' diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet 2008; 371 (9629): 2019-2025
  • 98 Russell MW, Ogra PL. Mucosal decisions: tolerance and responsiveness at mucosal surfaces. Immunol Invest 2010; 39 (4-5): 297-302
  • 99 Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev 2006; 58 (01) 68-89
  • 100 Warger T, Schild H, Rechtsteiner G. Initiation of adaptive immune responses by transcutaneous immunization. Immunol Lett 2007; 109 (01) 13-20
  • 101 Christophers E. Some observations on stratum corneum. Curr Med Res Opin 1982; 7 (Suppl. 02) 26-28
  • 102 Christophers E, Kligman AM. Visualization of the cell layers of the stratum corneum . J Invest Dermatol 1964; 42: 407-409
  • 103 Norton EB, Lawson LB, Freytag LC, Clements JD. Characterization of a mutant Escherichia coli heat-labile toxin, LT(R192G/L211A), as a safe and effective oral adjuvant. Clin Vaccine Immunol 2011; 18 (04) 546-551
  • 104 Novotny LA, Clements JD, Bakaletz LO. Transcutaneous immunization as preventative and therapeutic regimens to protect against experimental otitis media due to nontypeable Haemophilus influenzae. Mucosal Immunol 2011; 4 (04) 456-467
  • 105 Novotny LA, Clements JD, Bakaletz LO. Kinetic analysis and evaluation of the mechanisms involved in the resolution of experimental nontypeable Haemophilus influenzae-induced otitis media after transcutaneous immunization. Vaccine 2013; 31 (34) 3417-3426
  • 106 Novotny LA, Clements JD, Bakaletz LO. Therapeutic transcutaneous immunization with a band-aid vaccine resolves experimental otitis media. Clin Vaccine Immunol 2015; 22 (08) 867-874
  • 107 Giebink GS. Otitis media: the chinchilla model. Microb Drug Resist 1999; 5 (01) 57-72
  • 108 Bakaletz LO. Developing animal models for polymicrobial diseases. Nat Rev Microbiol 2004; 2 (07) 552-568
  • 109 Bakaletz LO. Viral potentiation of bacterial superinfection of the respiratory tract. Trends Microbiol 1995; 3 (03) 110-114
  • 110 Bakaletz LO. Chinchilla as a robust, reproducible and polymicrobial model of otitis media and its prevention. Expert Rev Vaccines 2009; 8 (08) 1063-1082
  • 111 Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 2000; 9 (03) 165-169
  • 112 Tan G, Xu P, Lawson LB. , et al. Hydration effects on skin microstructure as probed by high-resolution cryo-scanning electron microscopy and mechanistic implications to enhanced transcutaneous delivery of biomacromolecules. J Pharm Sci 2010; 99 (02) 730-740
  • 113 Brandtzaeg P. Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am J Respir Crit Care Med 2011; 183 (12) 1595-1604
  • 114 Mucida D, Salek-Ardakani S. Regulation of TH17 cells in the mucosal surfaces. J Allergy Clin Immunol 2009; 123 (05) 997-1003
  • 115 O'Connor RA, Taams LS, Anderton SM. Translational mini-review series on Th17 cells: CD4 T helper cells: functional plasticity and differential sensitivity to regulatory T cell-mediated regulation. Clin Exp Immunol 2010; 159 (02) 137-147