Semin Neurol 2018; 38(03): 267-277
DOI: 10.1055/s-0038-1660501
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Antibodies in Autoimmune Human Neurological Disease: Pathogenesis and Immunopathology

Jon P. Williams
1   Department of Neurology, University of Utah, Salt Lake City, Utah
,
Noel G. Carlson
1   Department of Neurology, University of Utah, Salt Lake City, Utah
2   Research Service and GRECC, George E. Wahlen Veterans Affairs Health Care System, Salt Lake City, Utah
3   Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah
,
John E. Greenlee
1   Department of Neurology, University of Utah, Salt Lake City, Utah
› Author Affiliations
Further Information

Publication History

Publication Date:
16 July 2018 (online)

Abstract

Immune-mediated processes represent a rapidly expanding categorical etiology for neurological disease manifestations spanning all subspecialties of neurology. Neural autoantibodies can be grossly divided into two main groups based on localization of the antigen: intracellular and cell membrane/synaptic antibodies. Antibodies reactive with neuronal membrane antigens have been identified in serum and cerebrospinal fluid of patients developing neurological disease either independent of or associated with cancer comorbidity, whereas antibodies directed against intracellular targets have a much higher rate of associated malignancy. Antibodies to neuronal membrane proteins such as the N-methyl-D-aspartate (NMDA) receptor are considered directly pathogenic based on disease models. Similar evidence exists for far fewer autoantibodies directed against intracellular targets. Attempts to produce an antibody-mediated animal model of human paraneoplastic disease have been unsuccessful to date. In this article, we review antineural antibodies and their clinical associations, briefly discuss recently characterized entities, and present proposed mechanisms of antibody pathogenicity.

 
  • References

  • 1 Wilson HA, Winfield JB, Lahita RG, Koffler D. Association of IgG anti-brain antibodies with central nervous system dysfunction in systemic lupus erythematosus. Arthritis Rheum 1979; 22 (05) 458-462
  • 2 Winfield JB, Brunner CM, Koffler D. Serologic studies in patients with systemic lupus erythematosus and central nervous system dysfunction. Arthritis Rheum 1978; 21 (03) 289-294
  • 3 Beutner EH, Witebsky E, Ricken D, Adler RH. Studies on autoantibodies in myasthenia gravis. JAMA 1962; 182: 46-58
  • 4 Lennon VA, Lindstrom JM, Seybold ME. Experimental autoimmune myasthenia: A model of myasthenia gravis in rats and guinea pigs. J Exp Med 1975; 141 (06) 1365-1375
  • 5 Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science 1973; 180 (4088): 871-872
  • 6 Patrick J, Lindstrom J, Culp B, McMillan J. Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody. Proc Natl Acad Sci U S A 1973; 70 (12) 3334-3338
  • 7 Eaton LM, Lambert EH. Electromyography and electric stimulation of nerves in diseases of motor unit; observations on myasthenic syndrome associated with malignant tumors. J Am Med Assoc 1957; 163 (13) 1117-1124
  • 8 Anderson NE, Cunningham JM, Posner JB. Autoimmune pathogenesis of paraneoplastic neurological syndromes. Crit Rev Neurobiol 1987; 3 (03) 245-299
  • 9 Anderson NE, Posner JB. Antineuronal autoantibodies in neurologic paraneoplastic syndromes. Ann N Y Acad Sci 1988; 540: 440-441
  • 10 Cunningham J, Graus F, Anderson N, Posner JB. Partial characterization of the Purkinje cell antigens in paraneoplastic cerebellar degeneration. Neurology 1986; 36 (09) 1163-1168
  • 11 Kampylafka EI, Alexopoulos H, Fouka P, Moutsopoulos HM, Dalakas MC, Tzioufas AG. Epileptic syndrome in systemic lupus erythematosus and neuronal autoantibody associations. Lupus 2016; 25 (11) 1260-1265
  • 12 Alexopoulos H, Kampylafka EI, Fouka P. , et al. Anti-aquaporin-4 autoantibodies in systemic lupus erythematosus persist for years and induce astrocytic cytotoxicity but not CNS disease. J Neuroimmunol 2015; 289: 8-11
  • 13 Ching KH, Burbelo PD, Tipton C. , et al. Two major autoantibody clusters in systemic lupus erythematosus. PLoS One 2012; 7 (02) e32001
  • 14 Benyahia B, Amoura Z, Rousseau A. , et al. Paraneoplastic antineuronal antibodies in patients with systemic autoimmune diseases. J Neurooncol 2003; 62 (03) 349-351
  • 15 Wilkinson PC, Zeromski J. Immunofluorescent detection of antibodies against neurones in sensory carcinomatous neuropathy. Brain 1965; 88 (03) 529-583
  • 16 Trotter JL, Hendin BA, Osterland CK. Cerebellar degeneration with Hodgkin disease. An immunological study. Arch Neurol 1976; 33 (09) 660-661
  • 17 Dalmau J, Furneaux HM, Cordon-Cardo C, Posner JB. The expression of the Hu (paraneoplastic encephalomyelitis/sensory neuronopathy) antigen in human normal and tumor tissues. Am J Pathol 1992; 141 (04) 881-886
  • 18 Krakauer J, Balmaceda C, Gluck JT, Posner JB, Fetell MR, Dalmau J. Anti-Yo-associated paraneoplastic cerebellar degeneration in a man with adenocarcinoma of unknown origin. Neurology 1996; 46 (05) 1486-1487
  • 19 Furneaux HF, Reich L, Posner JB. Autoantibody synthesis in the central nervous system of patients with paraneoplastic syndromes. Neurology 1990; 40 (07) 1085-1091
  • 20 López-Chiriboga AS, Clardy SL. Emerging subspecialties in neurology: autoimmune neurology. Neurology 2017; 89 (11) e129-e133
  • 21 Linnoila J, Pittock SJ. Autoantibody-associated central nervous system neurologic disorders. Semin Neurol 2016; 36 (04) 382-396
  • 22 Rekvig OP, Putterman C, Casu C. , et al. Autoantibodies in lupus: culprits or passive bystanders?. Autoimmun Rev 2012; 11 (08) 596-603
  • 23 Ludwig RJ, Vanhoorelbeke K, Leypoldt F. , et al. Mechanisms of autoantibody-induced pathology. Front Immunol 2017; 8: 603
  • 24 Leypoldt F, Armangue T, Dalmau J. Autoimmune encephalopathies. Ann N Y Acad Sci 2015; 1338: 94-114
  • 25 Prüss H, Höltje M, Maier N. , et al. IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology 2012; 78 (22) 1743-1753
  • 26 Mohammad SS, Sinclair K, Pillai S. , et al. Herpes simplex encephalitis relapse with chorea is associated with autoantibodies to N-Methyl-D-aspartate receptor or dopamine-2 receptor. Mov Disord 2014; 29 (01) 117-122
  • 27 Dalmau J, Tüzün E, Wu HY. , et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol 2007; 61 (01) 25-36
  • 28 Lai M, Hughes EG, Peng X. , et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol 2009; 65 (04) 424-434
  • 29 Hinson SR, Pittock SJ, Lucchinetti CF. , et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 2007; 69 (24) 2221-2231
  • 30 Petit-Pedrol M, Armangue T, Peng X. , et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol 2014; 13 (03) 276-286
  • 31 Hughes EG, Peng X, Gleichman AJ. , et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci 2010; 30 (17) 5866-5875
  • 32 Furneaux HM, Rosenblum MK, Dalmau J. , et al. Selective expression of Purkinje-cell antigens in tumor tissue from patients with paraneoplastic cerebellar degeneration. N Engl J Med 1990; 322 (26) 1844-1851
  • 33 Dalmau J, Graus F, Rosenblum MK, Posner JB. Anti-Hu--associated paraneoplastic encephalomyelitis/sensory neuronopathy. A clinical study of 71 patients. Medicine (Baltimore) 1992; 71 (02) 59-72
  • 34 Hormigo A, Dalmau J, Rosenblum MK, River ME, Posner JB. Immunological and pathological study of anti-Ri-associated encephalopathy. Ann Neurol 1994; 36 (06) 896-902
  • 35 Brieva-Ruíz L, Diaz-Hurtado M, Matias-Guiu X, Márquez-Medina D, Tarragona J, Graus F. Anti-Ri-associated paraneoplastic cerebellar degeneration and breast cancer: an autopsy case study. Clin Neurol Neurosurg 2008; 110 (10) 1044-1046
  • 36 Dalmau J, Graus F, Villarejo A. , et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain 2004; 127 (Pt 8): 1831-1844
  • 37 Greenlee JE, Brashear HR, Herndon RM. Immunoperoxidase labelling of rat brain sections with sera from patients with paraneoplastic cerebellar degeneration and systemic neoplasia. J Neuropathol Exp Neurol 1988; 47 (05) 561-571
  • 38 Dalmau J, Gultekin SH, Voltz R. , et al. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain 1999; 122 (Pt 1): 27-39
  • 39 Darnell JC, Albert ML, Darnell RB. Cdr2, a target antigen of naturally occurring human tumor immunity, is widely expressed in gynecological tumors. Cancer Res 2000; 60 (08) 2136-2139
  • 40 Manley GT, Smitt PS, Dalmau J, Posner JB. Hu antigens: reactivity with Hu antibodies, tumor expression, and major immunogenic sites. Ann Neurol 1995; 38 (01) 102-110
  • 41 Keime-Guibert F, Graus F, Fleury A. , et al. Treatment of paraneoplastic neurological syndromes with antineuronal antibodies (Anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide, and methylprednisolone. J Neurol Neurosurg Psychiatry 2000; 68 (04) 479-482
  • 42 Vernino S, O'Neill BP, Marks RS, O'Fallon JR, Kimmel DW. Immunomodulatory treatment trial for paraneoplastic neurological disorders. Neuro-oncol 2004; 6 (01) 55-62
  • 43 Berzero G, Karantoni E, Dehais C. , et al. Early intravenous immunoglobulin treatment in paraneoplastic neurological syndromes with onconeural antibodies. J Neurol Neurosurg Psychiatry 2018; 89 (07) 789-792
  • 44 Shams'ili S, de Beukelaar J, Gratama JW. , et al. An uncontrolled trial of rituximab for antibody associated paraneoplastic neurological syndromes. J Neurol 2006; 253 (01) 16-20
  • 45 Alfugham N, Gadoth A, Lennon VA. , et al. ITPR1 autoimmunity: frequency, neurologic phenotype, and cancer association. Neurol Neuroimmunol Neuroinflamm 2017; 5 (01) e418
  • 46 Gresa-Arribas N, Planagumà J, Petit-Pedrol M. , et al. Human neurexin-3α antibodies associate with encephalitis and alter synapse development. Neurology 2016; 86 (24) 2235-2242
  • 47 Do LD, Chanson E, Desestret V. , et al. Characteristics in limbic encephalitis with anti-adenylate kinase 5 autoantibodies. Neurology 2017; 88 (06) 514-524
  • 48 Hinson SR, Lopez-Chiriboga AS, Bower JH. , et al. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders. Neurol Neuroimmunol Neuroinflamm 2018; 5 (02) e438
  • 49 Lang K, Prüss H. Frequencies of neuronal autoantibodies in healthy controls: Estimation of disease specificity. Neurol Neuroimmunol Neuroinflamm 2017; 4 (05) e386
  • 50 Waters PJ, Pittock SJ, Bennett JL, Jarius S, Weinshenker BG, Wingerchuk DM. Evaluation of aquaporin-4 antibody assays. Clin Exp Neuroimmunol 2014; 5 (03) 290-303
  • 51 Lutz HU. Naturally occurring autoantibodies in mediating clearance of senescent red blood cells. Adv Exp Med Biol 2012; 750: 76-90
  • 52 Elkon KB, Silverman GJ. Naturally occurring autoantibodies to apoptotic cells. Adv Exp Med Biol 2012; 750: 14-26
  • 53 Levin EC, Acharya NK, Han M. , et al. Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood-brain barrier breakdown. Brain Res 2010; 1345: 221-232
  • 54 O'Bryant SE, Mielke MM, Rissman RA. , et al; Biofluid Based Biomarker Professional Interest Area. Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement 2017; 13 (01) 45-58
  • 55 Han M, Nagele E, DeMarshall C, Acharya N, Nagele R. Diagnosis of Parkinson's disease based on disease-specific autoantibody profiles in human sera. PLoS One 2012; 7 (02) e32383
  • 56 DeMarshall CA, Han M, Nagele EP. , et al; Parkinson's Study Group Investigators. Potential utility of autoantibodies as blood-based biomarkers for early detection and diagnosis of Parkinson's disease. Immunol Lett 2015; 168 (01) 80-88
  • 57 Sabater L, Gaig C, Gelpi E. , et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 2014; 13 (06) 575-586
  • 58 Dalmau J, Gleichman AJ, Hughes EG. , et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008; 7 (12) 1091-1098
  • 59 Tüzün E, Zhou L, Baehring JM, Bannykh S, Rosenfeld MR, Dalmau J. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol 2009; 118 (06) 737-743
  • 60 Camdessanché JP, Streichenberger N, Cavillon G. , et al. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur J Neurol 2011; 18 (06) 929-931
  • 61 Peng X, Hughes EG, Moscato EH, Parsons TD, Dalmau J, Balice-Gordon RJ. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann Neurol 2015; 77 (03) 381-398
  • 62 Ohkawa T, Fukata Y, Yamasaki M. , et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J Neurosci 2013; 33 (46) 18161-18174
  • 63 Pinatel D, Hivert B, Boucraut J. , et al. Inhibitory axons are targeted in hippocampal cell culture by anti-Caspr2 autoantibodies associated with limbic encephalitis. Front Cell Neurosci 2015; 9: 265
  • 64 Carvajal-González A, Leite MI, Waters P. , et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain 2014; 137 (Pt 8): 2178-2192
  • 65 Toyka KV, Brachman DB, Pestronk A, Kao I. Myasthenia gravis: passive transfer from man to mouse. Science 1975; 190 (4212): 397-399
  • 66 Fukunaga H, Engel AG, Lang B, Newsom-Davis J, Vincent A. Passive transfer of Lambert-Eaton myasthenic syndrome with IgG from man to mouse depletes the presynaptic membrane active zones. Proc Natl Acad Sci U S A 1983; 80 (24) 7636-7640
  • 67 Zacks SI, Bauer WC, Blumberg JM. The fine structure of the myasthenic neuromuscular junction. J Neuropathol Exp Neurol 1962; 21: 335-347
  • 68 Hansen N, Grünewald B, Weishaupt A. , et al. Human Stiff person syndrome IgG-containing high-titer anti-GAD65 autoantibodies induce motor dysfunction in rats. Exp Neurol 2013; 239: 202-209
  • 69 Vincent A. Successful ‘passive transfer’ of paraneoplastic stiff person syndrome with antibodies to an intracellular antigen. Brain 2010; 133 (11) 3164-3165
  • 70 Werner C, Haselmann H, Weishaupt A, Toyka KV, Sommer C, Geis C. Stiff person-syndrome IgG affects presynaptic GABAergic release mechanisms. J Neural Transm (Vienna) 2015; 122 (03) 357-362
  • 71 Werner C, Pauli M, Doose S. , et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain 2016; 139 (Pt 2): 365-379
  • 72 Malviya M, Barman S, Golombeck KS. , et al. NMDAR encephalitis: passive transfer from man to mouse by a recombinant antibody. Ann Clin Transl Neurol 2017; 4 (11) 768-783
  • 73 Martín-García E, Mannara F, Gutiérrez-Cuesta J. , et al. Intrathecal injection of P/Q type voltage-gated calcium channel antibodies from paraneoplastic cerebellar degeneration cause ataxia in mice. J Neuroimmunol 2013; 261 (1-2): 53-59
  • 74 Sillevis Smitt P, Kinoshita A, De Leeuw B. , et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med 2000; 342 (01) 21-27
  • 75 Moscato EH, Peng X, Jain A, Parsons TD, Dalmau J, Balice-Gordon RJ. Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 2014; 76 (01) 108-119
  • 76 Planagumà J, Leypoldt F, Mannara F. , et al. Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. Brain 2015; 138 (Pt 1): 94-109
  • 77 Spillane J, Ermolyuk Y, Cano-Jaimez M. , et al. Lambert-Eaton syndrome IgG inhibits transmitter release via P/Q Ca2+ channels. Neurology 2015; 84 (06) 575-579
  • 78 Spatola M, Petit-Pedrol M, Simabukuro MM. , et al. Investigations in GABAA receptor antibody-associated encephalitis. Neurology 2017; 88 (11) 1012-1020
  • 79 Lancaster E, Dalmau J. Neuronal autoantigens--pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 2012; 8 (07) 380-390
  • 80 Irani SR, Vincent A. NMDA receptor antibody encephalitis. Curr Neurol Neurosci Rep 2011; 11 (03) 298-304
  • 81 Sommer C, Weishaupt A, Brinkhoff J. , et al. Paraneoplastic stiff-person syndrome: passive transfer to rats by means of IgG antibodies to amphiphysin. Lancet 2005; 365 (9468): 1406-1411
  • 82 Geis C, Weishaupt A, Hallermann S. , et al. Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 2010; 133 (11) 3166-3180
  • 83 Sillevis Smitt PA, Manley GT, Posner JB. Immunization with the paraneoplastic encephalomyelitis antigen HuD does not cause neurologic disease in mice. Neurology 1995; 45 (10) 1873-1878
  • 84 Graus F, Illa I, Agusti M, Ribalta T, Cruz-Sanchez F, Juarez C. Effect of intraventricular injection of an anti-Purkinje cell antibody (anti-Yo) in a guinea pig model. J Neurol Sci 1991; 106 (01) 82-87
  • 85 Sakai K, Shirakawa T, Kitagawa Y, Li Y, Hirose G. Induction of cytotoxic T lymphocytes specific for paraneoplastic cerebellar degeneration-associated antigen in vivo by DNA immunization. J Autoimmun 2001; 17 (04) 297-302
  • 86 Tanaka K, Tanaka M, Onodera O, Igarashi S, Miyatake T, Tsuji S. Passive transfer and active immunization with the recombinant leucine-zipper (Yo) protein as an attempt to establish an animal model of paraneoplastic cerebellar degeneration. J Neurol Sci 1994; 127 (02) 153-158
  • 87 Greenlee JE, Burns JB, Rose JW, Jaeckle KA, Clawson S. Uptake of systemically administered human anticerebellar antibody by rat Purkinje cells following blood-brain barrier disruption. Acta Neuropathol 1995; 89 (04) 341-345
  • 88 Greenlee JE, Clawson SA, Hill KE. , et al. Neuronal uptake of anti-Hu antibody, but not anti-Ri antibody, leads to cell death in brain slice cultures. J Neuroinflammation 2014; 11: 160
  • 89 Greenlee JE, Clawson SA, Hill KE, Wood BL, Tsunoda I, Carlson NG. Purkinje cell death after uptake of anti-Yo antibodies in cerebellar slice cultures. J Neuropathol Exp Neurol 2010; 69 (10) 997-1007
  • 90 Schubert M, Panja D, Haugen M, Bramham CR, Vedeler CA. Paraneoplastic CDR2 and CDR2L antibodies affect Purkinje cell calcium homeostasis. Acta Neuropathol 2014; 128 (06) 835-852
  • 91 Hill KE, Clawson SA, Rose JW, Carlson NG, Greenlee JE. Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. J Neuroinflammation 2009; 6: 31
  • 92 Greenlee JE, Clawson SA, Hill KE. , et al. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS One 2015; 10 (04) e0123446
  • 93 Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol 2014; 24 (01) 83-97
  • 94 Hinson SR, Clift IC, Luo N, Kryzer TJ, Lennon VA. Autoantibody-induced internalization of CNS AQP4 water channel and EAAT2 glutamate transporter requires astrocytic Fc receptor. Proc Natl Acad Sci U S A 2017; 114 (21) 5491-5496
  • 95 Bennett JL, Owens GP. Neuromyelitis optica: deciphering a complex immune-mediated astrocytopathy. J Neuroophthalmol 2017; 37 (03) 291-299
  • 96 Uhlén M, Fagerberg L, Hallström BM. , et al. Proteomics. Tissue-based map of the human proteome. Science 2015; 347 (6220): 1260419
  • 97 Greenlee JE, Parks TN, Jaeckle KA. Type IIa (‘anti-Hu’) antineuronal antibodies produce destruction of rat cerebellar granule neurons in vitro. Neurology 1993; 43 (10) 2049-2054