Thromb Haemost 1964; 12(01): 232-261
DOI: 10.1055/s-0038-1655587
Originalarbeiten – Original Articles – Travaux Originaux
Schattauer GmbH

Toxicity of Heparinoids, with Special Reference to the Precipitation of Fibrinogen[*]

S Sasaki**
1   Departments of Physiology, Surgery, and Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
2   Department of Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
,
T Takemoto
1   Departments of Physiology, Surgery, and Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
2   Department of Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
,
S Oka
1   Departments of Physiology, Surgery, and Ophthalmology, Nagoya University School of Medicine, Nagoya, Japan
2   Department of Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
› Author Affiliations
This work was supported by a grant from Meito-Sangyo Co., Ltd., Nagoya, Japan.
Further Information

Publication History

Publication Date:
27 June 2018 (online)

Summary

To demonstrate whether the intravascular precipitation of fibrinogen is responsible for the toxicity of heparinoid, the relation between the toxicity of heparinoid in vivo and the precipitation of fibrinogen in vitro was investigated, using dextran sulfate of various molecular weights and various heparinoids.

1. There are close relationships between the molecular weight of dextran sulfate, its toxicity, and the quantity of fibrinogen precipitated.

2. The close relationship between the toxicity and the precipitation of fibrinogen found for dextran sulfate holds good for other heparinoids regardless of their molecular structures.

3. Histological findings suggest strongly that the pathological changes produced with dextran sulfate are caused primarily by the intravascular precipitates with occlusion of the capillaries.

From these facts, it is concluded that the precipitates of fibrinogen with heparinoid may be the cause or at least the major cause of the toxicity of heparinoid.

4. The most suitable molecular weight of dextran sulfate for clinical use was found to be 5,300 ~ 6,700, from the maximum value of the product (LD50 · Anticoagulant activity). This product (LD50 · Anticoagulant activity) can be employed generally to assess the comparative merits of various heparinoids.

5. Clinical use of the dextran sulfate prepared on this basis gave satisfactory results. No severe reaction was observed. However, two delayed reactions, alopecia and thrombocytopenia, were observed. These two reactions seem to come from the cause other than intravascular precipitation.

* Part of this work was presented before the 20th General Meeting of the Japanese Hematological Society at Nagoya, Japan, March 28, 1958, and the 6th Annual Meeting of the Canadian Federation of Biological Societies at London, Ontario, Canada, June 19, 1963.


** Research Fellow, Medical Research Council, Canada. Present address of Dr. Sasaki is Department of Physiology, Nagoya University School of Medicine, Showa-ku, Nagoya, Japan.


 
  • References

  • 1 Jorpes E. The chemistry of heparin. Biochem. J. 29: 1817 1935;
  • 2 Bergström S. Über Polysaccharidesterschwefelsäuren mit Heparin Wirkungen. Z. physiol. Chem. 238: 163 1936;
  • 3 Karrer P, Koenig H, Usteri E. Zur Kenntnis blutgerinnungshemmender Polysaccharide -polyschwefelsäureester und ähnlicher Verbindungen. Helv. chim. Acta. 26: 1296 1943;
  • 4 Astrup T, Galsmar I, Volkert M. Polysaccharide sulfuric acids as anticoagulants. Acta physiol. scand. 8: 215 1944;
  • 5 Fischer R, Bircher J, Reich T. Der Haarausfall nach antikoagulierender Therapie. Schweiz, med. Wschr. 55: 509 1953;
  • 6 Wright I. S. An evaluation of anticoagulant therapy. Cardiologia (Basel) 21: 709 1952;
  • 7 Hirschboeck J. S, Madison F. W, Pisciotta A. V. Alopecia and other toxic effects of heparin and synthetic heparinoids. Amer. J. med. Sci. 227: 279 1954;
  • 8 Sorenson C. W, Wright I. S. A synthetic anticoagulant: a polysulfuric acid ester of poly-anhydromannuronic acid (Paritol). Circulation. 2: 658 1950;
  • 9 Matis P. Nebenwirkungen gerinnungshemmender Maßnahmen. In: Thrombose und Embolie. B. Schwabe; Basel: 1954: 853.
  • 10 Hjort P, Stormorken H. A study of the in vitro and in vivo effects of a synthetic heparin-like anticoagulant, dextran sulfate. Scand. J. clin. Lab. Invest. 9. suppl. 29 1957
  • 11 Astrup T, Piper J. Interaction between fibrinogen and polysaccharide polysulfuric acids. Acta physiol. Scand. 11: 211 1946;
  • 12 Piper J. Toxicology of synthetic polysaccharide polysulfuric acid esters. Acta pharmacol. (Kbh.) 2: 317 1946;
  • 13 Grönwall A, Ingelman B, Mosimann H. A sulfuric acid ester of dextran with a potency comparable to that of heparin. Upsala Läk.-Fären Förh. 50: 397 1945;
  • 14 vonK aulla K. N, Husemann E. The relation of molecular size and shape to physiological activity. Experientia (Basel) 2: 222 1946;
  • 15 Patat F, Vogler K. Polyvinylalkohol-polyschwefelsäureester als Modellsubstanzen für synthetische Heparine. Helv. chim. Acta 35: 128 1952;
  • 16 Walton K. W. The biological behavior of a new synthetic anticoagulant (dextran sulphate) possessing heparin-like properties. Brit. J. Pharmacol. 7: 370 1952;
  • 17 Egami F, Takahashi N. A simple method of sulfate micro-determination. Bull. Chem. Soc. Japan. 30: 442 1957;
  • 18 Soda T, Egami F. A new sulfuric acid ester in the mucus of Charonia lampas. Bull. Chem. Soc. Japan. 13: 652 1938;
  • 19 Egami F, Asahi T, Takahashi N, Suzuki S, Shikata S, Nisizawa K. Chemical studies on charonin sulfuric acid. Bull. Chem. Soc. Japan. 28: 685 1955;
  • 20 Pharamcopeia of U.S. A., XIV, 1950, pp. 272.
  • 21 Laki K. The polymerization of proteins: the action of thrombin on fibrinogen. Arch. Biochem. 32: 317 1951;
  • 22 Sasaki S, Noguchi H. Interaction of fibrinogen with dextran sulfate. J. gen. Physiol. 43: 1 1959;
  • 23 Sasaki S, Takemoto T, Oka S. A propos de la toxicité du sulfate de dextrane. C. R. Soc. Biol. (Paris) 151: 1799 1957;
  • 24 Suzuki H. Histopathological studies of the effects of dextran sulfate of varying molecular weight on the organs of the living body (in Japanese). Nagoya-Igaku. 80: 1 1959;
  • 25 Kawai K, Takemoto T, Kawahara H, Sasaki S. The clinical use of a synthetic anticoagulant, dextran sulfate. Nagoya J. med. Sci. 23: 107 1960;
  • 26 Fischer A. Die Bindung von Heparin an Eiweiß. Biochem. Z. 278: 133 1935;
  • 27 Jaques L. B. The reaction of heparin with proteins and complex bases. Biochem. J. 37: 189 1943;
  • 28 Meyer K. H, Palmer J. W, Smyth E. M. On glycoprotein. V. Protein complexes of chondroitin sulfuric acid. J. biol. Chem. 119: 501 1937;
  • 29 Gorter E, Nanninga L. Complexes of heparin and proteins. Discussion of Faraday Soc. 13: 205 1953;
  • 30 Partridge S. M. Chemistry of connective tissues. I. The fate of combination of chondroitin sulfate in cartilage. Biochem. J. 43: 387 1948;
  • 31 Porter W. T. Fat embolism, a cause of shock. Boston med. surg. J. 176: 248 1917;
  • 32 Wiggers G. J. Physiology of shock. Harvard University Press; Cambridge: 1950: 10.
  • 33 Hausman B, Dreyfus P. M. Intracapillary precipitates produced in rabbits by means of sodium polyanetholsulfonate. Arch. Path. 56: 597 1953;
  • 34 Studer A, Engelberg B, Bandoli L. O. Zur Frage der Toxizität von Heparinoiden. Thrombose und Embolie. B. Schwabe; Basel: 1954: 863.
  • 35 Walton K. W. Investigation of the toxicity of a series of dextran sulphates of varying molecular weight. Brit. J. Pharmacol. 9: 1 1954;
  • 36 Studer A. Les heparinoids. Rev. hémat. 10: 394 1955;
  • 37 Lippman S. M. The growth-inhibitory action of heparin on the Ehrlich ascites tumor in mice. Cancer Res. 17: 11 1957;
  • 38 Heilbrunn L. V, Wilson W. L. The effect of heparin on cell division. Proc. Soc. exp. Biol. (N.D.) 70: 179 1949;
  • 39 Paff G. H, Sugiura H. J, Bocher C. A, Roth J. S. The probable mechanism of heparin inhibition of mitosis. Anat. Ree. 114: 499 1952;
  • 40 Hueper W. C. Macromolecular substances as pathogenic agents. Arch. Path. 33: 267 1942;
  • 41 Pidaski E. J. Present status of plasma volume expanders in the treatment of shock. Arch. Surg. 65: 745 1961;
  • 42 Annual report for 1946 of the Section on Anesthesiology: Including data and remarks concerning blood transfusion and the use of blood substitutes. Proc. Staff Meet. Mayo Clin. 22: 357 1947;
  • 43 Richter G. W. Parenchymatous lesions of liver and kidney of mice due to pectin. Am. J. Path. 26: 379 1950;
  • 44 Fletcher F, Martin L. E. Interaction of macromolecules and fibrinogen. Nature. 170: 319 1952;
  • 45 Carpenter P. L. Immunology and serology. W. B. Saunders; Philadelphia: 1956: 279.
  • 46 Humphrey J. H. Biochemical aspects of reactions in hypersensitive responses, in Cellular and humoral aspects of the hypersensitive states. edited by Lawrence H. S. P. B. Hoeber; New York: 1959: 5.
  • 47 Kabat E. A, Mayer M. M. Experimental immunology. 2nd edition.. C. C. Thomas; Springfield: 1961: 22-96.
  • 48 McKinnon G. E, Andrews E. C, Heptinstall R. H, Germuth F. G. An immunohistologic study on the occurrence of intravascular antigen-antibody precipitation and its role in anaphylaxis in the rabbit. Bull. Johns Hopkins Hosp. 101: 258 1957;
  • 49 Thomas L, Good R. A. Studies on the generalized Shwartzman reaction. I. General observations concerning the phenomenon. J. exp. Med. 96: 605 1952;
  • 50 Good R. A, Thomas L. Studies on the generalized Shwartzman reaction. IV. Prevention of the local and generalized Shwartzman reactions with heparin. J. exp. Med. 97: 871 1953;
  • 51 Shapiro S. S, McKay D. G. The prevention of the generalized Shwartzman reaction with sodium warfarin. J. exp. Med. 107: 377 1958;
  • 52 Baker L, Dodds E. C. Obstruction of the renal tubules during the excretion of haemoglobin. Brit. J. exp. Path. 6: 247 1925;
  • 53 Gesse E. P, Filatov A. N. Experimental studies on alterations in organism in hemolysis. Vestnik Khirurgii. 1932, 80. (quoted in J. Amer. med. Ass. 106:2241 [1936])
  • 54 Polayes S. H, Lederer M. Reactions to blood transfusion. J. Lab. clin. Med. 17: 1029 1932;
  • 55 Bordley J. Reactions following transfusion of blood, with urinary suppression and uremia. Arch. int. Med. 47: 288 1931;