Adipositas - Ursachen, Folgeerkrankungen, Therapie 2018; 12(02): 68-72
DOI: 10.1055/s-0038-1654052
Übersichtsarbeit
Schattauer GmbH

Liraglutid in der Pharmakotherapie der Adipositas

Liraglutide in the pharmacotherapy of obesity
S. Brede
1   Medizinische Klinik 1, Abteilung für Endokrinologie, Diabetologie und Internistische Adipositasmedizin, Universitätsklinikum Schleswig-Holstein - Campus Lübeck, Lübeck, Deutschland, Klinikdirektor: Prof. Dr.med. Dr. h.c. Hendrik Lehnert
,
H. Lehnert
1   Medizinische Klinik 1, Abteilung für Endokrinologie, Diabetologie und Internistische Adipositasmedizin, Universitätsklinikum Schleswig-Holstein - Campus Lübeck, Lübeck, Deutschland, Klinikdirektor: Prof. Dr.med. Dr. h.c. Hendrik Lehnert
2   Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Deutschland
,
S. M. Schmid
2   Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Deutschland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
04. Mai 2018 (online)

Zusammenfassung

Aufgrund der weltweit zunehmenden Prävalenz von Übergewicht und Adipositas gewinnen medikamentöse Therapien zur Gewichtsreduktion mehr und mehr an Bedeutung. Einen neuen Therapieansatz stellt der Glukagon-like Peptid 1 (GLP-1) Rezeptoragonist Liraglutid dar (Handelsname Saxenda®), der seit März 2015 erstmals zur alleinigen Behandlung der Adipositas in der EU zugelassen ist. Dabei scheinen die gewichtsreduzierenden Effekte von Liraglutid sowohl peripher über eine verzögerte Magenentleerung, als auch zentral über die Beeinflussung von appetitregulierenden Hirnarealen, vermittelt zu sein. In verschiedenen Studien konnte in den letzten Jahren eine signifikante Gewichtsabnahme durch Liraglutid in unterschiedlichen Probandenkollektiven, wie z.B. übergewichtigen und adipösen Patienten ohne aber auch mit Diabetes, nachgewiesen werden. Liraglutid bestätigt sich außerdem als überwiegend gut verträgliche medikamentöse Therapie der Adipositas, wobei die häufigsten berichteten Nebenwirkungen vorübergehende leichte bis moderate gastrointestinale Beschwerden, wie Übelkeit oder Völlegefühl, sind.

Summary

The prevalence of overweight and obesity increases worldwide. Therefore, treating obesity and its related metabolic and cardiovascular comorbidities has a significant impact on health care systems. A promising new drug is liraglutide, a glucagon-like peptide 1 (GLP-1) receptor agonist. Since 2015, liraglutide 3 mg (trade name Saxenda®) is approved for obesity treatment in the EU. GLP-1 has an important functional role in peripheral and central appetite-signaling. Multiple studies of the past years proved statistically significant and clinically meaningful weight loss by liraglutide. In obese and overweight subjects liraglutide 3 mg per day is generally well tolerated, with most adverse events being gastrointestinal in nature.

 
  • Literatur

  • 1 Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond.) 2008; 32 (09) 1431-1437.
  • 2 Anandhakrishnan A, Korbonits M. Glucagon-like peptide 1 in the pathophysiology and pharmacotherapy of clinical obesity. World J Diabetes 2016; 07 (20) 572-598.
  • 3 Tucker JD, Dhanvantari S, Brubaker PL. Proglucagon processing in islet and intestinal cell lines. Regul Pept 1996; 62 (01) 29-35.
  • 4 Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 1995; 56 (02) 117-126.
  • 5 O’Donovan DG, Doran S, Feinle-Bisset C, Jones KL, Meyer JH, Wishart JM. et al. Effect of variations in small intestinal glucose delivery on plasma glucose, insulin, and incretin hormones in healthy subjects and type 2 diabetes. J Clin Endocrinol Metab 2004; 89 (07) 3431-3435.
  • 6 Hansen L, Deacon CF, Orskov C, Holst JJ. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 1999; 140 (11) 5356-5363.
  • 7 Donnelly D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br J Pharmacol 2012; 166 (01) 27-41.
  • 8 Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A. et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia 2016; 59 (05) 954-965.
  • 9 Verdich C, Flint A, Gutzwiller JP, Naslund E, Beglinger C, Hellstrom PM. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab 2001; 86 (09) 4382-4389.
  • 10 Naslund E, Gutniak M, Skogar S, Rossner S, Hellstrom PM. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr 1998; 68 (03) 525-530.
  • 11 Flint A, Raben A, Astrup A, Holst JJ. Glucagonlike peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101 (03) 515-20.
  • 12 Schirra J, Wank U, Arnold R, Goke B, Katschinski M. Effects of glucagon-like peptide-1(7-36)amide on motility and sensation of the proximal stomach in humans. Gut 2002; 50 (03) 341-348.
  • 13 Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulating gastric function. Annu Rev Physiol 2006; 68: 279-305.
  • 14 Gutzwiller JP, Drewe J, Goke B, Schmidt H, Rohrer B, Lareida J. et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999; 276 5 Pt 2 R1541-R1544.
  • 15 Hagemann D, Holst JJ, Gethmann A, Banasch M, Schmidt WE, Meier JJ. Glucagon-like peptide 1 (GLP-1) suppresses ghrelin levels in humans via increased insulin secretion. Regul Pept 2007; 143 1-3 64-68.
  • 16 Secher A, Jelsing J, Baquero AF, Hecksher-Sorensen J, Cowley MA, Dalboge LS. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest 2014; 124 (10) 4473-4488.
  • 17 Dhillo WS, Small CJ, Stanley SA, Jethwa PH, Seal LJ, Murphy KG. et al. Hypothalamic interactions between neuropeptide Y, agouti-related protein, cocaine- and amphetamine-regulated transcript and alpha-melanocyte-stimulating hormone in vitro in male rats. J Neuroendocrinol 2002; 14 (09) 725-730.
  • 18 Richard JE, Anderberg RH, Goteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One 2015; 10 (03) e0119034.
  • 19 Sisley S, Gutierrez-Aguilar R, Scott M, D’Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide’s anorectic but not glucoselowering effect. J Clin Invest 2014; 124 (06) 2456-2463.
  • 20 De Silva A, Salem V, Long CJ, Makwana A, Newbould RD, Rabiner EA. et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab 2011; 14 (05) 700-6.
  • 21 Adam TC, Westerterp-Plantenga MS. Glucagonlike peptide-1 release and satiety after a nutrient challenge in normal-weight and obese subjects. Br J Nutr 2005; 93 (06) 845-851.
  • 22 Ranganath LR, Beety JM, Morgan LM, Wright JW, Howland R, Marks V. Attenuated GLP-1 secretion in obesity: cause or consequence?. Gut 1996; 38 (06) 916-919.
  • 23 Meloni AR, DeYoung MB, Lowe C, Parkes DG. GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence. Diabetes Obes Metab 2013; 15 (01) 15-27.
  • 24 Hussein MS, Abushady MM, Refaat S, Ibrahim R. Plasma level of glucagon-like peptide 1 in obese Egyptians with normal and impaired glucose tolerance. Arch Med Res 2014; 45 (01) 58-62.
  • 25 van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol 2014; 221 (01) T1-16.
  • 26 Iepsen EW, Torekov SS, Holst JJ. Liraglutide for Type 2 diabetes and obesity: a 2015 update. Expert Rev Cardiovasc Ther 2015; 13 (07) 753-767.
  • 27 Mancini MC, de Melo ME. The burden of obesity in the current world and the new treatments available: focus on liraglutide 3.0 mg. Diabetol Metab Syndr 2017; 09: 44.
  • 28 Astrup A, Rossner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 2009; 374 9701 1606-1616.
  • 29 Astrup A, Carraro R, Finer N, Harper A, Kunesova M, Lean ME. et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond.) 2012; 36 (06) 843-854.
  • 30 Blackman A, Foster GD, Zammit G, Rosenberg R, Aronne L, Wadden T. et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes (Lond.) 2016; 40 (08) 1310-1319.
  • 31 Pi-Sunyer XI, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC, le Roux CW, Violante Ortiz R, Jensen CB, Wilding JP. SCALE Obesity and Prediabetes NN8022-1839 Study Group. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med 2015; Jul 2; 373 (01) 11-22 doi: 10.1056/NEJMoa1411892.
  • 32 Wadden TA, Hollander P, Klein S, Niswender K, Woo V, Hale PM. et al. Weight maintenance and additional weight loss with liraglutide after lowcalorie-diet-induced weight loss: the SCALE Maintenance randomized study. Int J Obes (Lond.) 2013; 37 (11) 1443-1451.
  • 33 Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV. et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. JAMA 2015; 314 (07) 687-699.
  • 34 le Roux CW, Astrup A, Fujioka K, Greenway F, Lau DCW, Van Gaal L. et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet 2017; 389 10077 1399-1409.
  • 35 Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A. et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365 (17) 1597-1604.
  • 36 Monami M, Dicembrini I, Nreu B, Andreozzi F, Sesti G, Mannucci E. Predictors of response to glucagon-like peptide-1 receptor agonists: a metaanalysis and systematic review of randomized controlled trials. Acta Diabetol 2017; 54 (12) 1101-14.
  • 37 Butsch WS. Obesity medications: what does the future look like?. Curr Opin Endocrinol Diabetes Obes 2015; 22 (05) 360-366.
  • 38 Steinberg WM, Rosenstock J, Wadden TA, Donsmark M, Jensen CB, DeVries JH. Impact of Liraglutide on Amylase, Lipase, and Acute Pancreatitis in Participants With Overweight/Obesity and Normoglycemia, Prediabetes, or Type 2 Diabetes: Secondary Analyses of Pooled Data From the SCALE Clinical Development Program. Diabetes Care 2017; 40 (07) 839-848.
  • 39 Baggio LL, Ussher JR, McLean BA, Cao X, Kabir MG, Mulvihill EE. et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol Metab 2017; 06 (11) 1339-1349.
  • 40 Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375 (04) 311-322.