Semin Musculoskelet Radiol 2018; 22(04): 444-456
DOI: 10.1055/s-0038-1653955
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Dedicated CT and MRI Techniques for the Evaluation of the Postoperative Knee

Iman Khodarahmi
1   Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
,
Elliot K. Fishman
1   Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
,
Jan Fritz
1   Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
22 August 2018 (online)

Abstract

Advances in surgical techniques, orthopaedic implant design, and higher demands for improved functionality of the aging population have resulted in a high prevalence of patients with metallic implants about the knee. Total knee arthroplasty, knee-replacing tumor prostheses, and osteosynthesis implants create various imaging artifacts and pose special challenges for the imaging evaluation with computed tomography (CT) and magnetic resonance imaging (MRI). CT artifacts can be effectively mitigated with metal artifact reduction reconstruction algorithms, dual-energy data acquisition with virtual monoenergetic extrapolation, and three-dimensional postprocessing techniques, such as volume and cinematic rendering. Artifacts related to metal implants on MRI can be reduced via optimization of the scan parameters and using advanced techniques such as multi-acquisition variable-resonance image combination, and slice encoding for metal artifact correction.

 
  • References

  • 1 Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S. Projected increase in total knee arthroplasty in the United States—an alternative projection model. Osteoarthritis Cartilage 2017; 25 (11) 1797-1803
  • 2 Healy WL, Della Valle CJ, Iorio R. , et al. Complications of total knee arthroplasty: standardized list and definitions of the Knee Society. Clin Orthop Relat Res 2013; 471 (01) 215-220
  • 3 Sneag DB, Bogner EA, Potter HG. Magnetic resonance imaging evaluation of the painful total knee arthroplasty. Semin Musculoskelet Radiol 2015; 19 (01) 40-48
  • 4 Mulcahy H, Chew FS. Current concepts in knee replacement: complications. AJR Am J Roentgenol 2014; 202 (01) W76-86
  • 5 Boas F, Fleischmann D. CT artifacts: causes and reduction techniques. Imaging Med 2012; 4 (02) 229-240
  • 6 Glover GH, Pelc NJ. Nonlinear partial volume artifacts in x-ray computed tomography. Med Phys 1980; 7 (03) 238-248
  • 7 Lee MJ, Kim S, Lee SA. , et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 2007; 27 (03) 791-803
  • 8 Moon SG, Hong SH, Choi JY. , et al. Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-dimensional quantitative assessment. J Comput Assist Tomogr 2008; 32 (04) 630-633
  • 9 Gjesteby L, Man BD, Jin Y, Paganetti H, Verburg J, Giantsoudi D. , et al. Metal artifact reduction in CT: where are we after four decades?. IEEE Access 2016; 4: 5826-5849
  • 10 Huang JY, Kerns JR, Nute JL. , et al. An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys Med Biol 2015; 60 (03) 1047-1067
  • 11 Andersson KM, Norrman E, Geijer H. , et al. Visual grading evaluation of commercially available metal artefact reduction techniques in hip prosthesis computed tomography. Br J Radiol 2016; 89 (1063): 20150993
  • 12 Metal artifact reduction for orthopedic implants (O-MAR). Cleveland, OH: Philips Healthcare; 2012. [Updated January 8, 2012; cited January 17, 2018]. Available from: http://clinical.netforum.healthcare.philips.com/us_en/Explore/White-Papers/CT/Metal-Artifact-Reduction-for-Orthopedic-Implants-(O-MAR)
  • 13 Gondim Teixeira PA, Meyer JB, Baumann C. , et al. Total hip prosthesis CT with single-energy projection-based metallic artifact reduction: impact on the visualization of specific periprosthetic soft tissue structures. Skeletal Radiol 2014; 43 (09) 1237-1246
  • 14 Metal Artifact Reduction in CT. Otawara, Japan: Canon Medical Systems; 2017. [Updated February 21, 2017; cited August 8, 2018]. Available from: https://de.medical.canon/wp-content/uploads/sites/17/2016/08/Metal-Artifact-Reduction-in-CT-SEMAR-Daniel-Marriner.pdf . Accessed August 9, 2018
  • 15 Smart MAR. . (MAR). Milwaukee, WI: GE Healthcare; 2013. [Updated June 20, 2013; cited January 17, 2018]. Available from: http://www3.gehealthcare.com/en/products/categories/computed_tomography/radiation_therapy_planning/metal_artifact_reduction
  • 16 Subhas N, Primak AN, Obuchowski NA. , et al. Iterative metal artifact reduction: evaluation and optimization of technique. Skeletal Radiol 2014; 43 (12) 1729-1735
  • 17 Axente M, Paidi A, Von Eyben R. , et al. Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Med Phys 2015; 42 (03) 1170-1183
  • 18 Meyer E, Raupach R, Lell M, Schmidt B, Kachelriess M. Normalized metal artifact reduction (NMAR) in computed tomography. Med Phys 2010; 37 (10) 5482-5493
  • 19 Meyer E, Raupach R, Lell M, Schmidt B, Kachelrieß M. Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys 2012; 39 (04) 1904-1916
  • 20 Schabel C, Gatidis S, Bongers M. , et al. Improving CT-based PET attenuation correction in the vicinity of metal implants by an iterative metal artifact reduction algorithm of CT data and its comparison to dual-energy-based strategies: a phantom study. Invest Radiol 2017; 52 (01) 61-65
  • 21 Omoumi P, Becce F, Racine D, Ott JG, Andreisek G, Verdun FR. Dual-energy CT: basic principles, technical approaches, and applications in musculoskeletal imaging (Part 1). Semin Musculoskelet Radiol 2015; 19 (05) 431-437
  • 22 Lehmann LA, Alvarez RE, Macovski A. , et al. Generalized image combinations in dual KVP digital radiography. Med Phys 1981; 8 (05) 659-667
  • 23 Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol 2012; 199 (5, Suppl): S9-S15
  • 24 Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys 2011; 38 (12) 6371-6379
  • 25 Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Invest Radiol 2012; 47 (07) 406-414
  • 26 Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 2011; 21 (07) 1424-1429
  • 27 Lewis M, Reid K, Toms AP. Reducing the effects of metal artefact using high keV monoenergetic reconstruction of dual energy CT (DECT) in hip replacements. Skeletal Radiol 2013; 42 (02) 275-282
  • 28 Fayad LM, Johnson P, Fishman EK. Multidetector CT of musculoskeletal disease in the pediatric patient: principles, techniques, and clinical applications. Radiographics 2005; 25 (03) 603-618
  • 29 Fritz J, Fishman EK, Corl F, Carrino JA, Weber KL, Fayad LM. Imaging of limb salvage surgery. AJR Am J Roentgenol 2012; 198 (03) 647-660
  • 30 Rowe SP, Fritz J, Fishman EK. CT evaluation of musculoskeletal trauma: initial experience with cinematic rendering. Emerg Radiol 2018; 25 (01) 93-101
  • 31 Fritz J, Lurie B, Potter HG. MR imaging of knee arthroplasty implants. Radiographics 2015; 35 (05) 1483-1501
  • 32 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 33 Khodarahmi I, Nittka M, Fritz J. Leaps in technology: advanced MR imaging after total hip arthroplasty. Semin Musculoskelet Radiol 2017; 21 (05) 604-615
  • 34 Sofka CM, Potter HG, Figgie M, Laskin R. Magnetic resonance imaging of total knee arthroplasty. Clin Orthop Relat Res 2003; (406) 129-135
  • 35 Ahlawat S, Stern SE, Belzberg AJ, Fritz J. High-resolution metal artifact reduction MR imaging of the lumbosacral plexus in patients with metallic implants. Skeletal Radiol 2017; 46 (07) 897-908
  • 36 Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging 2017; 46 (04) 972-991
  • 37 Kumar NM, de Cesar Netto C, Schon LC, Fritz J. Metal artifact reduction magnetic resonance imaging around arthroplasty implants: the negative effect of long echo trains on the implant-related artifact. Invest Radiol 2017; 52 (05) 310-316
  • 38 Del Grande F, Santini F, Herzka DA. , et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014; 34 (01) 217-233
  • 39 Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol 2012; 199 (06) W735-42
  • 40 Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988; 15 (01) 7-11
  • 41 Ai T, Padua A, Goerner F. , et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Invest Radiol 2012; 47 (05) 267-276
  • 42 Hilgenfeld T, Prager M, Heil A. , et al. PETRA, MSVAT-SPACE and SEMAC sequences for metal artefact reduction in dental MR imaging. Eur Radiol 2017; 27 (12) 5104-5112
  • 43 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62 (01) 66-76
  • 44 Chen CA, Chen W, Goodman SB. , et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011; 33 (05) 1121-1127
  • 45 Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology 2012; 265 (01) 204-214
  • 46 Fritz J, Lurie B, Miller TT. Imaging of hip arthroplasty. Semin Musculoskelet Radiol 2013; 17 (03) 316-327
  • 47 Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics 2014; 34 (04) E106-E132
  • 48 Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61 (02) 381-390
  • 49 Koch KM, Brau AC, Chen W. , et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011; 65 (01) 71-82
  • 50 Hargreaves BA, Chen W, Lu W. , et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging 2010; 31 (04) 987-996
  • 51 Chen W, Beatty P, Koch K, Brau A. Parallel MRI near metallic implants [2783]. Paper presented at: 17th annual meeting of the International Society for Magnetic Resonance in Medicine; 2009; Honolulu, HI
  • 52 Worters PW, Sung K, Stevens KJ, Koch KM, Hargreaves BA. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging 2013; 37 (01) 243-248
  • 53 Fritz J, Fritz B, Thawait GK. , et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol 2016; 45 (10) 1345-1356
  • 54 Fritz J, Ahlawat S, Demehri S. , et al. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants. Invest Radiol 2016; 51 (10) 666-676
  • 55 de Cesar Netto C, Fonseca LF, Fritz B. , et al. Metal artifact reduction MRI of total ankle arthroplasty implants. Eur Radiol 2018; 28 (05) 2216-2227
  • 56 Otazo R, Nittka M, Bruno M. , et al. Sparse-SEMAC: rapid and improved SEMAC metal implant imaging using SPARSE-SENSE acceleration. Magn Reson Med 2017; 78 (01) 79-87
  • 57 Khodarahmi I, Fritz J. Advanced MR Imaging after total hip arthroplasty: the clinical impact. Semin Musculoskelet Radiol 2017; 21 (05) 616-629