Thromb Haemost 1971; 26(01): 038-057
DOI: 10.1055/s-0038-1653654
Originalarbeiten – Original Articles – Travaux Originaux
Schattauer GmbH

A Comparison of Methods for Platelet Lysis and the Isolation of Platelet Membranes

A. J Barber
1   The American National Red Cross Blood Research Laboratory Bethesda, Maryland 20014
2   Department of Biochemistry Georgetown University School of Medicine Washington, D. C. 20007
,
D. S Pepper*
1   The American National Red Cross Blood Research Laboratory Bethesda, Maryland 20014
2   Department of Biochemistry Georgetown University School of Medicine Washington, D. C. 20007
,
G. A Jamieson
1   The American National Red Cross Blood Research Laboratory Bethesda, Maryland 20014
2   Department of Biochemistry Georgetown University School of Medicine Washington, D. C. 20007
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2018 (online)

Summary

Four methods of platelet lysis, namely, sonication, nitrogen cavitation in a high pressure bomb, the use of a “no clearance” tissue homogenizer and simple osmotic lysis have been compared in terms of ease, effectiveness and reproducibility in comparison with a method involving the hypotonic lysis of glycerol-loaded platelets ; the most extensive studies have been carried out using sonication and the tissue homogenizer. In order to reduce the degree of fragmentation of the platelet membrane, the use of surface stabilizing agents such as zinc chloride and fluorescein mercuric acetate have also been investigated. Membranes obtained in these different ways have been isolated by centrifugation on continuous or discontinuous sucrose density gradients and the resulting fractions compared by electron microscopy, enzymatic activity, chemical analysis and hemagglutination inhibition. The glycerol-lysis technique was found to be most effective (85%) in untreated platelets and the degree of lysis was considerably reduced in platelets hardened by the zinc chloride method. Ultrastructural studies showed that the largest membrane fragments (175 nm) were obtained by glycerol lysis of untreated platelets and that smaller vesicles (50-100 nm) were obtained by the other techniques even following membrane stabilization. Double membrane structures were obtained in several of these methods.

Contribution No.188 from The Blood Research Laboratory, The American National Red Cross.


* Present Address: Blood Transfusion Service (Edinburgh and South-East Scotland Region), Regional Blood Transfusion Centre, Royal Infirmary, Edinburgh 3, Scotland.


 
  • References

  • 1 Barber A. J, Pepper D. S, Jamieson G. A. Chemical studies of human platelet membranes. Fed. Proc 28: 575 1969;
  • 2 Barber A. J, Jamieson G. A. Isolation and characterization of plasma membranes from human blood platelets. J. biol. Chem 245: 6357 1970;
  • 3 Berg H. C. Sulfanilic acid diazonium salt: A label for the outside of the human erythrocyte membrane. Biochim. biophys. Acta (Amst) 183: 65 1969;
  • 4 Booyse F. M, Rafelson M. E. Protein synthesis and platelet function. In: Dynamics of Thrombus Formation and Dissolution. 149-171 J. B. Lippincott Company; Philadelphia: 1969
  • 5 Brinkhous K. M. Platelets: Their Role in Hemostasis and Thrombosis. F. K. Schattauer Verlag; Stuttgart: 1967
  • 6 Buckingham S, Maynert E. W. The release of 5-hydroxytryptamine, potassium and amino acids from platelets. J. Pharmacol, exp. Ther 143: 332 1964;
  • 7 Bull B. S, Zucker M. B. Changes in platelet volume produced by temperature, metabolic inhibitors and aggregating agents. Proc. Soc. exp. Biol. (N. Y) 120: 296 1965;
  • 8 Bull B. S, Schneiderman M. A, Brecher G. Platelet counts with the coulter counter. Amer. J. clin. Path 44: 678 1965;
  • 9 Day H. J, Holmsen H, Hovig T. Subcellular particles of human platelets. Scand. J. Haemat., Suppl 07: 1 1969;
  • 10 Glick M. G, Warren L. Membranes of animal cells. III. Amino acid incorporation by isolated surface membranes. Proc. Nat. Acad. Sci 63: 563 1969;
  • 11 Hunter M. J, Commerford S. L. Pressure homogenization of mammalian tissues. Biochim. biophys. Acta (Amst) 47: 580 1961;
  • 12 Jamieson G. A, Groh N. Isoelectric focusing of human blood cell membranes. Anal. Biochem. 41 1971;
  • 13 Jamieson G. A, Pepper D. S. Membrane glycoproteins of blood platelets. In: The Circulating Platelet. 189. Academic Press; New York: 1971
  • 14 Jamieson G. A, Fuller N. A, Barber A. J, Lombart G. Membrane glycoproteins of human blood platelets. Ser. Haemat 04: 125 1971;
  • 15 Johnson S. A, Monto R. W, Rebuck J. W, Horn R. G. Blood Platelets. Little, Brown and Company; Boston, Mass: 1961
  • 16 Johnson S. A, Guest M. M. Dynamics of Thrombus Formation and Dissolution. J. B. Lippincott Company; Philadelphia: 1969
  • 17 Johnson S. A, Seegers W. H. Physiology of Hemostasis and Thrombosis. Charles C. Thomas; Springfield, Ill: 1967
  • 18 Kowalski E, Niewiarowski S. Biochemistry of Blood Platelets. Academic Press; New York: 1967
  • 19 Kunitz M. Chicken intestinal alkaline phosphatase. II. Reactivation with zinc ions. J. Gen. Physiol 43: 1149 1960;
  • 20 Maddy A. H. A fluorescent label for the outer components of the plasma membrane. Biochim. biophys. Acta (Amst) 88: 390 1964;
  • 21 Marcus A. J, Zucker M. B. The Physiology of Blood Platelets. Grune and Stratton; New York: 1965
  • 22 Marcus A. J, Zucker-Franklin DA, Safier L. B, Ullman H. L. Studies on human platelet granules and membranes. J. clin. Invest 45: 14 1966;
  • 23 Nakao K, Angrist A. A. Membrane surface specialization of blood platelet and megakaryocyte. Nature (Lond) 217: 960 1968;
  • 24 Pepper D. S, Jamieson G. A. Isolation of a glycoprotein fraction from human platelet membranes which inhibits viral haemagglutination. Nature (Lond) 219: 1252 1968;
  • 25 Pepper D. S, Jamieson G. A. Studies on glycoproteins. III. Isolation of sialylglycopeptides from human platelet membranes. Biochemistry 08: 3362 1969;
  • 26 Pepper D. S, Jamieson G. A. Isolation of a macroglycopeptide from human platelets. Biochemistry 09: 3706 1970;
  • 27 Pert J. H, Zucker M. B, Lundberg A, Yankee R, Henderson E. Recent advances in preparation of platelet concentrates from ACD and CPD blood. Vox Sang 13: 119 1967;
  • 28 Platt W. R. Color Atlas and Textbook of Hematology. P.200. J. B. Lippincott Company; Philadelphia: 1969
  • 29 Rubalcava B, de Munoz DMartinez, Gitler G. Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes. Biochemistry 08: 2742 1969;
  • 30 Saba S. R, Rodman N. F, Mason R. G. Platelet ATPase activities. II. ATPase activities of isolated platelet membrane fractions. Amer. J. Path 55: 225 1969;
  • 31 Schulz H. Electron Microscopy of Blood Platelets and Thrombosis. Springer-Verlag: 1968
  • 32 Solatunturi E, Paasonen M. K. Intracellular distribution of monoamine oxidase, 5-hydroxy - tryptamine and histamine in blood platelets of rabbit. Ann. Med. exp. Fenn 44: 427 1966;
  • 33 Svensson H. Separation of proteins by isoelectric focusing in stable pH gradients. Protides Biol. Fluids 15: 515 1967;
  • 34 Warren L, Glick M. G, Nass M. K. Membranes of animal cells. I. Methods of isolation of the surface membrane. J. Cell Physiol 68: 269 1966;
  • 35 Weber E, Mondt H. Verteilung und Beeinflussung von Metabolite in fraktionierte Homogenaten aus Blutplättchen. Klin. Wschr 45: 165 1967;