Thromb Haemost 1981; 46(01): 421
DOI: 10.1055/s-0038-1653296
Platelets
Schattauer GmbH Stuttgart

Thromboxane A2-Stimulated Human Platelet Aggregation Is Potentiated By Epinephrine Acting VIA Alpha Adrenergic Receptors

G J Johnson
Veterans Administration Medical Center and University of Minnesota Medical School, Minneapolis, U.S.A
,
G H R Rao
Veterans Administration Medical Center and University of Minnesota Medical School, Minneapolis, U.S.A
,
J G White
Veterans Administration Medical Center and University of Minnesota Medical School, Minneapolis, U.S.A
› Author Affiliations
Further Information

Publication History

Publication Date:
24 July 2018 (online)

Epinephrine (E) potentiates arachidonate (A)-induced aggregation of human platelets. A-insensitive dog platelets (AIP), that form thromboxane A2 (T) but do not aggregate when stirred with A alone, aggregate when exposed to E + A. Therefore, we studied the effect of E on T-stimu- lated human platelet aggregation. AIP stirred with A formed T which was confirmed by TLC. 1/100 to 1/200 volume of AIP was removed 30 sec. after A, and transferred to gel- filtered, aspirin-incubated human platelets. Recipient platelet aggregation was proportional to the volume of AIP transferred. The addition of the thromboxane synthetase inhibitor, Azo Analog I, abolished the aggregating activity of AIP. Transfer of an aliquot of AIP that was inadequate to aggregate human gel-filtered, aspirin-incubated platelets resulted in irreversible aggregation in the presence of ≥0.5nM E. E potentiated aggregation when added 3 min. before but not 3 min. after aliquot transfer. T-stimulated aggregation was abolished by the T-antagonist, 13 azapro- stenoic acid (APA), but E added after APA and before T restored aggregation. E potentiation of T-stimulated aggregation was abolished by prior exposure to equimolar yohimbine, dihydroergocryptine and phentolamine, agents that bind to alpha2 adrenergic receptors, but not by prazosin an alpha1 antagonist. Higher concentrations of E reversed the inhibitory effects of the alpha2 adrenergic agents. All of these agents in higher concentrations (1-100μM) also blocked aggregation induced by T alone. Therefore T-induced platelet aggregation is potentiated by E, in concentrations attained in vivo, by a mechanism linked to platelet alpha adrenergic receptors. Platelet alpha2 receptors have a close functional relationship to the postulated T receptor. E may initiate platelet aggregation in vivo when T is formed in quantities inadequate to alone induce aggregation.