Semin Respir Crit Care Med 2018; 39(03): 362-376
DOI: 10.1055/s-0038-1651494
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Treatment of Mycobacterium abscessus Complex

Luke Strnad
1   Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, Portland, Oregon
,
Kevin L. Winthrop
1   Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, Portland, Oregon
2   Department of Epidemiology and Epidemiology and Medicine, Oregon Health and Sciences University and Portland State University School of Public Health, Portland, Oregon
› Author Affiliations
Further Information

Publication History

Publication Date:
02 August 2018 (online)

Abstract

Of the nontuberculous mycobacteria (NTMs) causing lung disease, members of the Mycobacterium abscessus complex (MABc) present a formidable obstacle to successful management. This challenge starts from a poorly understood pathogenesis, continues with complicated subspecies variation in treatment response, and extends to the multidrug-resistant nature of these organisms. The disease often necessitates the use of intravenous therapy, toxic drug combinations, and, in some cases, lung resection. Like many NTMs, MABc treatment requires prolonged therapy with multiple medications, and pulmonary disease in some subspecies can be impossible to eradicate or cure. This disease also represents a frequent and unique problem in certain populations, including cystic fibrosis and lung transplant recipients, and providers who manage such patients should be familiar with how MABc disease influences management. Because of the rising prevalence of the MABc, especially in patients with complicated underlying pulmonary disease, it is increasingly necessary for infectious diseases and pulmonary medicine clinicians to understand the unique aspects of MABc management and understand when to obtain expert consultation in the care of these patients.

Disclosure

Luke Strnad is the guarantor of this article.


Roles:


Literature review: Luke Strnad.


Writing: Luke Strnad, Kevin Winthrop.


Financial Support

None.


 
  • References

  • 1 Griffith DE, Aksamit T, Brown-Elliott BA. , et al; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175 (04) 367-416
  • 2 Yu X, Liu P, Liu G. , et al. The prevalence of non-tuberculous mycobacterial infections in mainland China: Systematic review and meta-analysis. J Infect 2016; 73 (06) 558-567
  • 3 Shah SK, McAnally KJ, Seoane L. , et al. Analysis of pulmonary non-tuberculous mycobacterial infections after lung transplantation. Transpl Infect Dis 2016; 18 (04) 585-591
  • 4 Koh WJ, Stout JE, Yew WW. Advances in the management of pulmonary disease due to Mycobacterium abscessus complex. Int J Tuberc Lung Dis 2014; 18 (10) 1141-1148
  • 5 Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis 2015; 21 (09) 1638-1646
  • 6 Kusunoki S, Ezaki T. Proposal of Mycobacterium peregrinum sp. nov., nom. rev., and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov. Int J Syst Bacteriol 1992; 42 (02) 240-245
  • 7 Thomson R, Tolson C, Sidjabat H, Huygens F, Hargreaves M. Mycobacterium abscessus isolated from municipal water - a potential source of human infection. BMC Infect Dis 2013; 13: 241
  • 8 De Groote MA, Huitt G. Infections due to rapidly growing mycobacteria. Clin Infect Dis 2006; 42 (12) 1756-1763
  • 9 Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis 2011; 52 (05) 565-571
  • 10 Yoshida S, Tsuyuguchi K, Kobayashi T. , et al. Association between sequevar and antibiotic treatment outcome in patients with Mycobacterium abscessus complex infections in Japan. J Med Microbiol 2018; 67 (01) 74-82
  • 11 Greendyke R, Byrd TF. Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob Agents Chemother 2008; 52 (06) 2019-2026
  • 12 Kim HY, Kim BJ, Kook Y. , et al. Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol 2010; 54 (06) 347-353
  • 13 Bastian S, Veziris N, Roux AL. , et al. Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother 2011; 55 (02) 775-781
  • 14 Kim SY, Shin SJ, Jeong BH, Koh WJ. Successful antibiotic treatment of pulmonary disease caused by Mycobacterium abscessus subsp. abscessus with C-to-T mutation at position 19 in erm(41) gene: case report. BMC Infect Dis 2016; 16: 207
  • 15 Kim HS, Lee KS, Koh WJ. , et al. Serial CT findings of Mycobacterium massiliense pulmonary disease compared with Mycobacterium abscessus disease after treatment with antibiotic therapy. Radiology 2012; 263 (01) 260-270
  • 16 Shin SJ, Choi GE, Cho SN. , et al. Mycobacterial genotypes are associated with clinical manifestation and progression of lung disease caused by Mycobacterium abscessus and Mycobacterium massiliense. Clin Infect Dis 2013; 57 (01) 32-39
  • 17 Diel R, Ringshausen F, Richter E, Welker L, Schmitz J, Nienhaus A. Microbiological and clinical outcomes of treating non-Mycobacterium avium complex nontuberculous mycobacterial pulmonary disease: a systematic review and meta-analysis. Chest 2017; 152 (01) 120-142
  • 18 Prevots DR, Shaw PA, Strickland D. , et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 2010; 182 (07) 970-976
  • 19 Hoefsloot W, van Ingen J, Andrejak C. , et al; Nontuberculous Mycobacteria Network European Trials Group. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 2013; 42 (06) 1604-1613
  • 20 Nagano H, Kinjo T, Nei Y, Yamashiro S, Fujita J, Kishaba T. Causative species of nontuberculous mycobacterial lung disease and comparative investigation on clinical features of Mycobacterium abscessus complex disease: a retrospective analysis for two major hospitals in a subtropical region of Japan. PLoS One 2017; 12 (10) e0186826
  • 21 Lee MR, Keng LT, Shu CC. , et al. Risk factors for Mycobacterium chelonae-abscessus pulmonary disease persistence and deterioration. J Infect 2012; 64 (02) 228-230
  • 22 van Ingen J, de Zwaan R, Dekhuijzen RP, Boeree MJ, van Soolingen D. Clinical relevance of Mycobacterium chelonae-abscessus group isolation in 95 patients. J Infect 2009; 59 (05) 324-331
  • 23 Koh WJ, Jeon K, Lee NY. , et al. Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 2011; 183 (03) 405-410
  • 24 Roux AL, Catherinot E, Ripoll F. , et al; Jean-Louis Herrmann for the OMA Group. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in france. J Clin Microbiol 2009; 47 (12) 4124-4128
  • 25 Aitken ML, Limaye A, Pottinger P. , et al. Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 2012; 185 (02) 231-232
  • 26 Olivier KN, Weber DJ, Wallace Jr RJ. , et al; Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 2003; 167 (06) 828-834
  • 27 Czaja CA, Levin AR, Cox CW, Vargas D, Daley CL, Cott GR. Improvement in quality of life after therapy for Mycobacterium abscessus group lung infection. A prospective cohort study. Ann Am Thorac Soc 2016; 13 (01) 40-48
  • 28 Surette MG. The cystic fibrosis lung microbiome. Ann Am Thorac Soc 2014; 11 (Suppl. 01) S61-S65
  • 29 Birmes FS, Wolf T, Kohl TA. , et al. Mycobacterium abscessus subsp. abscessus is capable of degrading Pseudomonas aeruginosa quinolone signals. Front Microbiol 2017; 8: 339
  • 30 Griffith DE, Girard WM, Wallace Jr RJ. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 154 patients. Am Rev Respir Dis 1993; 147 (05) 1271-1278
  • 31 Satta G, McHugh TD, Mountford J, Abubakar I, Lipman M. Managing pulmonary nontuberculous mycobacterial infection. time for a patient-centered approach. Ann Am Thorac Soc 2014; 11 (01) 117-121
  • 32 Chung MJ, Lee KS, Koh WJ. , et al. Thin-section CT findings of nontuberculous mycobacterial pulmonary diseases: comparison between Mycobacterium avium-intracellulare complex and Mycobacterium abscessus infection. J Korean Med Sci 2005; 20 (05) 777-783
  • 33 Griffith DE, Philley JV, Brown-Elliott BA. , et al. The significance of Mycobacterium abscessus subspecies abscessus isolation during Mycobacterium avium complex lung disease therapy. Chest 2015; 147 (05) 1369-1375
  • 34 Shallom SJ, Gardina PJ, Myers TG. , et al. New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identifying Mycobacterium massiliense isolates with inducible clarithromycin resistance. J Clin Microbiol 2013; 51 (09) 2943-2949
  • 35 Nakanaga K, Sekizuka T, Fukano H. , et al. Discrimination of Mycobacterium abscessus subsp. massiliense from Mycobacterium abscessus subsp. abscessus in clinical isolates by multiplex PCR. J Clin Microbiol 2014; 52 (01) 251-259
  • 36 Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 2012; 67 (04) 810-818
  • 37 Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995; 64: 29-63
  • 38 Jarlier V, Nikaido H. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 1990; 172 (03) 1418-1423
  • 39 Nguyen L, Thompson CJ. Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm. Trends Microbiol 2006; 14 (07) 304-312
  • 40 Malcolm KC, Nichols EM, Caceres SM. , et al. Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival. PLoS One 2013; 8 (02) e57402
  • 41 Qvist T, Eickhardt S, Kragh KN. , et al. Chronic pulmonary disease with Mycobacterium abscessus complex is a biofilm infection. Eur Respir J 2015; 46 (06) 1823-1826
  • 42 Fennelly KP, Ojano-Dirain C, Yang Q. , et al. Biofilm formation by Mycobacterium abscessus in a lung cavity. Am J Respir Crit Care Med 2016; 193 (06) 692-693
  • 43 Ripoll F, Pasek S, Schenowitz C. , et al. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009; 4 (06) e5660
  • 44 Nash KA, Brown-Elliott BA, Wallace Jr RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009; 53 (04) 1367-1376
  • 45 Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. 2nd ed. Wayne, PA: Clinical and Laboratory Standards Institute (CLSI); 2011
  • 46 Yoshida S, Tsuyuguchi K, Suzuki K. , et al. Further isolation of Mycobacterium abscessus subsp. abscessus and subsp. bolletii in different regions of Japan and susceptibility of these isolates to antimicrobial agents. Int J Antimicrob Agents 2013; 42 (03) 226-231
  • 47 Alcaide F, Pfyffer GE, Telenti A. Role of embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob Agents Chemother 1997; 41 (10) 2270-2273
  • 48 Guillemin I, Jarlier V, Cambau E. Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria. Antimicrob Agents Chemother 1998; 42 (08) 2084-2088
  • 49 Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012; 337 (6098): 1107-1111
  • 50 Hollis A, Ahmed Z. Preserving antibiotics, rationally. N Engl J Med 2013; 369 (26) 2474-2476
  • 51 Van Boeckel TP, Brower C, Gilbert M. , et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A 2015; 112 (18) 5649-5654
  • 52 Prammananan T, Sander P, Brown BA. , et al. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis 1998; 177 (06) 1573-1581
  • 53 Wallace Jr RJ, Meier A, Brown BA. , et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 1996; 40 (07) 1676-1681
  • 54 Woods GL, Bergmann JS, Witebsky FG. , et al. Multisite reproducibility of Etest for susceptibility testing of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum. J Clin Microbiol 2000; 38 (02) 656-661
  • 55 Adjemian J, Prevots DR, Gallagher J, Heap K, Gupta R, Griffith D. Lack of adherence to evidence-based treatment guidelines for nontuberculous mycobacterial lung disease. Ann Am Thorac Soc 2014; 11 (01) 9-16
  • 56 Novosad SA, Beekmann SE, Polgreen PM, Mackey K, Winthrop KL. ; M. abscessus Study Team. Treatment of Mycobacterium abscessus Infection. Emerg Infect Dis 2016; 22 (03) 511-514
  • 57 Park J, Cho J, Lee CH, Han SK, Yim JJ. Progression and treatment outcomes of lung disease caused by Mycobacterium abscessus and Mycobacterium massiliense. Clin Infect Dis 2017; 64 (03) 301-308
  • 58 Koh WJ, Jeong BH, Kim SY. , et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin Infect Dis 2017; 64 (03) 309-316
  • 59 Lavollay M, Dubée V, Heym B. , et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect 2014; 20 (05) O297-O300
  • 60 Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest 2017; 152 (04) 800-809
  • 61 Yang B, Jhun BW, Moon SM. , et al. Clofazimine-containing regimen for the treatment of Mycobacterium abscessus lung disease. Antimicrob Agents Chemother 2017; 61 (06) 61
  • 62 Koh WJ, Kim YH, Kwon OJ. , et al. Surgical treatment of pulmonary diseases due to nontuberculous mycobacteria. J Korean Med Sci 2008; 23 (03) 397-401
  • 63 Kang HK, Park HY, Kim D. , et al. Treatment outcomes of adjuvant resectional surgery for nontuberculous mycobacterial lung disease. BMC Infect Dis 2015; 15: 76
  • 64 Mitchell JD, Bishop A, Cafaro A, Weyant MJ, Pomerantz M. Anatomic lung resection for nontuberculous mycobacterial disease. Ann Thorac Surg 2008; 85 (06) 1887-1892 , discussion 1892–1893
  • 65 Yu JA, Pomerantz M, Bishop A, Weyant MJ, Mitchell JD. Lady Windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur J Cardiothorac Surg 2011; 40 (03) 671-675
  • 66 Soroka D, Dubée V, Soulier-Escrihuela O. , et al. Characterization of broad-spectrum Mycobacterium abscessus class A β-lactamase. J Antimicrob Chemother 2014; 69 (03) 691-696
  • 67 Brown-Elliott BA, Killingley J, Vasireddy S, Bridge L, Wallace Jr RJ. In vitro comparison of ertapenem, meropenem, and imipenem against isolates of rapidly growing mycobacteria and nocardia by use of broth microdilution and Etest. J Clin Microbiol 2016; 54 (06) 1586-1592
  • 68 Lefebvre AL, Dubée V, Cortes M, Dorchêne D, Arthur M, Mainardi JL. Bactericidal and intracellular activity of β-lactams against Mycobacterium abscessus. J Antimicrob Chemother 2016; 71 (06) 1556-1563
  • 69 Dubée V, Bernut A, Cortes M. , et al. β-Lactamase inhibition by avibactam in Mycobacterium abscessus. J Antimicrob Chemother 2015; 70 (04) 1051-1058
  • 70 Dubée V, Soroka D, Cortes M. , et al. Impact of β-lactamase inhibition on the activity of ceftaroline against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother 2015; 59 (05) 2938-2941
  • 71 Lefebvre AL, Le Moigne V, Bernut A. , et al. Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother 2017; 61 (04) 61
  • 72 Czaja CA, Levin A, Moridani M, Krank JL, Curran-Everett D, Anderson PL. Cefoxitin continuous infusion for lung infection caused by the Mycobacterium abscessus group. Antimicrob Agents Chemother 2014; 58 (06) 3570-3571
  • 73 Ferro BE, Srivastava S, Deshpande D. , et al. Amikacin pharmacokinetics/pharmacodynamics in a novel hollow-fiber Mycobacterium abscessus disease model. Antimicrob Agents Chemother 2015; 60 (03) 1242-1248
  • 74 Lyu J, Jang HJ, Song JW. , et al. Outcomes in patients with Mycobacterium abscessus pulmonary disease treated with long-term injectable drugs. Respir Med 2011; 105 (05) 781-787
  • 75 Ellender CM, Law DB, Thomson RM, Eather GW. Safety of IV amikacin in the treatment of pulmonary non-tuberculous mycobacterial disease. Respirology 2016; 21 (02) 357-362
  • 76 Lee H, Sohn YM, Ko JY. , et al. Once-daily dosing of amikacin for treatment of Mycobacterium abscessus lung disease. Int J Tuberc Lung Dis 2017; 21 (07) 818-824
  • 77 Peloquin CA, Berning SE, Nitta AT. , et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis 2004; 38 (11) 1538-1544
  • 78 Lee SY, Kim HY, Kim BJ. , et al. Effect of amikacin on cell wall glycopeptidolipid synthesis in Mycobacterium abscessus. J Microbiol 2017; 55 (08) 640-647
  • 79 Tsai SH, Lai HC, Hu ST. Subinhibitory doses of aminoglycoside antibiotics induce changes in the phenotype of Mycobacterium abscessus. Antimicrob Agents Chemother 2015; 59 (10) 6161-6169
  • 80 Pryjma M, Burian J, Kuchinski K, Thompson CJ. Antagonism between front-line antibiotics clarithromycin and amikacin in the treatment of Mycobacterium abscessus infections is mediated by the whiB7 gene. Antimicrob Agents Chemother 2017; 61 (11) 61
  • 81 Olivier KN, Shaw PA, Glaser TS. , et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann Am Thorac Soc 2014; 11 (01) 30-35
  • 82 Rose SJ, Neville ME, Gupta R, Bermudez LE. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One 2014; 9 (09) e108703
  • 83 Olivier KN, Griffith DE, Eagle G. , et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2017; 195 (06) 814-823
  • 84 Mougari F, Bouziane F, Crockett F. , et al. Selection of resistance to clarithromycin in Mycobacterium abscessus subspecies. Antimicrob Agents Chemother 2016; 61 (01) 61
  • 85 Choi GE, Shin SJ, Won CJ. , et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med 2012; 186 (09) 917-925
  • 86 Stout JE, Floto RA. Treatment of Mycobacterium abscessus: all macrolides are equal, but perhaps some are more equal than others. Am J Respir Crit Care Med 2012; 186 (09) 822-823
  • 87 Zhang Z, Lu J, Liu M, Wang Y, Zhao Y, Pang Y. In vitro activity of clarithromycin in combination with other antimicrobial agents against Mycobacterium abscessus and Mycobacterium massiliense. Int J Antimicrob Agents 2017; 49 (03) 383-386
  • 88 Ikeda AK, Prince AA, Chen JX, Lieu JEC, Shin JJ. Macrolide-associated sensorineural hearing loss: a systematic review. Laryngoscope 2018; 128 (01) 228-236
  • 89 Albert RK, Connett J, Bailey WC. , et al; COPD Clinical Research Network. Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011; 365 (08) 689-698
  • 90 Haworth CS, Bilton D, Elborn JS. Long-term macrolide maintenance therapy in non-CF bronchiectasis: evidence and questions. Respir Med 2014; 108 (10) 1397-1408
  • 91 Tang S, Yao L, Hao X. , et al. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin Infect Dis 2015; 60 (09) 1361-1367
  • 92 Kuaban C, Noeske J, Rieder HL, Aït-Khaled N, Abena Foe JL, Trébucq A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis 2015; 19 (05) 517-524
  • 93 van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother 2012; 56 (12) 6324-6327
  • 94 Shen GH, Wu BD, Hu ST, Lin CF, Wu KM, Chen JH. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents 2010; 35 (04) 400-404
  • 95 Ferro BE, Meletiadis J, Wattenberg M. , et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother 2015; 60 (02) 1097-1105
  • 96 Clofazimine. Tuberculosis (Edinb) 2008; 88 (02) 96-99
  • 97 Nix DE, Adam RD, Auclair B, Krueger TS, Godo PG, Peloquin CA. Pharmacokinetics and relative bioavailability of clofazimine in relation to food, orange juice and antacid. Tuberculosis (Edinb) 2004; 84 (06) 365-373
  • 98 Wallace Jr RJ, Bedsole G, Sumter G. , et al. Activities of ciprofloxacin and ofloxacin against rapidly growing mycobacteria with demonstration of acquired resistance following single-drug therapy. Antimicrob Agents Chemother 1990; 34 (01) 65-70
  • 99 Choi GE, Min KN, Won CJ, Jeon K, Shin SJ, Koh WJ. Activities of moxifloxacin in combination with macrolides against clinical isolates of Mycobacterium abscessus and Mycobacterium massiliense. Antimicrob Agents Chemother 2012; 56 (07) 3549-3555
  • 100 Ferro BE, Srivastava S, Deshpande D. , et al. Moxifloxacin's limited efficacy in the hollow-fiber model of Mycobacterium abscessus disease. Antimicrob Agents Chemother 2016; 60 (06) 3779-3785
  • 101 Kim J, Sung H, Park JS, Choi SH, Shim TS, Kim MN. Subspecies distribution and macrolide and fluoroquinolone resistance genetics of Mycobacterium abscessus in Korea. Int J Tuberc Lung Dis 2016; 20 (01) 109-114
  • 102 Jeon K, Kwon OJ, Lee NY. , et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med 2009; 180 (09) 896-902
  • 103 Wallace Jr RJ, Brown-Elliott BA, Crist CJ, Mann L, Wilson RW. Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria. Antimicrob Agents Chemother 2002; 46 (10) 3164-3167
  • 104 Ferro BE, Srivastava S, Deshpande D. , et al. Tigecycline is highly efficacious against Mycobacterium abscessus pulmonary disease. Antimicrob Agents Chemother 2016; 60 (05) 2895-2900
  • 105 Huang CW, Chen JH, Hu ST. , et al. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int J Antimicrob Agents 2013; 41 (03) 218-223
  • 106 Wallace Jr RJ, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother 2014; 69 (07) 1945-1953
  • 107 Diekema DJ, Jones RN. Oxazolidinone antibiotics. Lancet 2001; 358 (9297): 1975-1982
  • 108 Dooley KE, Obuku EA, Durakovic N, Belitsky V, Mitnick C, Nuermberger EL. ; Efficacy Subgroup, RESIST-TB. World Health Organization group 5 drugs for the treatment of drug-resistant tuberculosis: unclear efficacy or untapped potential?. J Infect Dis 2013; 207 (09) 1352-1358
  • 109 Srivastava S, Magombedze G, Koeuth T. , et al. Linezolid dose that maximizes sterilizing effect while minimizing toxicity and resistance emergence for tuberculosis. Antimicrob Agents Chemother 2017; 61 (08) 61
  • 110 Compain F, Soroka D, Heym B. , et al. In vitro activity of tedizolid against the Mycobacterium abscessus complex. Diagn Microbiol Infect Dis 2018; 90 (03) 186-189
  • 111 Zhang Z, Lu J, Song Y, Pang Y. In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex. Diagn Microbiol Infect Dis 2018; 90 (01) 31-34
  • 112 Winthrop KL, Ku JH, Marras TK. , et al. The tolerability of linezolid in the treatment of nontuberculous mycobacterial disease. Eur Respir J 2015; 45 (04) 1177-1179
  • 113 van Heeswijk RP, Dannemann B, Hoetelmans RM. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 2014; 69 (09) 2310-2318
  • 114 Andries K, Verhasselt P, Guillemont J. , et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 2005; 307 (5707): 223-227
  • 115 Pang Y, Zheng H, Tan Y, Song Y, Zhao Y. In vitro activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob Agents Chemother 2017; 61 (05) pii
  • 116 Huitric E, Verhasselt P, Andries K, Hoffner SE. In vitro antimycobacterial spectrum of a diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 2007; 51 (11) 4202-4204
  • 117 Kakkar AK, Dahiya N. Bedaquiline for the treatment of resistant tuberculosis: promises and pitfalls. Tuberculosis (Edinb) 2014; 94 (04) 357-362
  • 118 Philley JV, Wallace Jr RJ, Benwill JL. , et al. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 2015; 148 (02) 499-506
  • 119 Olivier KN, Weber DJ, Lee JH. , et al; Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. Nontuberculous mycobacteria. II: nested-cohort study of impact on cystic fibrosis lung disease. Am J Respir Crit Care Med 2003; 167 (06) 835-840
  • 120 Levy I, Grisaru-Soen G, Lerner-Geva L. , et al. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis 2008; 14 (03) 378-384
  • 121 Martiniano SL, Sontag MK, Daley CL, Nick JA, Sagel SD. Clinical significance of a first positive nontuberculous mycobacteria culture in cystic fibrosis. Ann Am Thorac Soc 2014; 11 (01) 36-44
  • 122 Esther Jr CR, Esserman DA, Gilligan P, Kerr A, Noone PG. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros 2010; 9 (02) 117-123
  • 123 Waters V, Ratjen F. Antibiotic treatment for nontuberculous mycobacteria lung infection in people with cystic fibrosis. Cochrane Database Syst Rev 2016; 12: CD010004
  • 124 Bryant JM, Grogono DM, Greaves D. , et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 2013; 381 (9877): 1551-1560
  • 125 Binder AM, Adjemian J, Olivier KN, Prevots DR. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am J Respir Crit Care Med 2013; 188 (07) 807-812
  • 126 Coolen N, Morand P, Martin C. , et al. Reduced risk of nontuberculous mycobacteria in cystic fibrosis adults receiving long-term azithromycin. J Cyst Fibros 2015; 14 (05) 594-599
  • 127 Broda A, Jebbari H, Beaton K, Mitchell S, Drobniewski F. Comparative drug resistance of Mycobacterium abscessus and M. chelonae isolates from patients with and without cystic fibrosis in the United Kingdom. J Clin Microbiol 2013; 51 (01) 217-223
  • 128 Roux AL, Catherinot E, Soismier N. , et al; OMA group. Comparing Mycobacterium massiliense and Mycobacterium abscessus lung infections in cystic fibrosis patients. J Cyst Fibros 2015; 14 (01) 63-69
  • 129 Lobo LJ, Chang LC, Esther Jr CR, Gilligan PH, Tulu Z, Noone PG. Lung transplant outcomes in cystic fibrosis patients with pre-operative Mycobacterium abscessus respiratory infections. Clin Transplant 2013; 27 (04) 523-529
  • 130 Corris PA. Lung transplantation for cystic fibrosis and bronchiectasis. Semin Respir Crit Care Med 2013; 34 (03) 297-304
  • 131 Osmani M, Sotello D, Alvarez S, Odell JA, Thomas M. Mycobacterium abscessus infections in lung transplant recipients: 15-year experience from a single institution. Transpl Infect Dis 2018
  • 132 Gilljam M, Scherstén H, Silverborn M, Jönsson B, Ericsson Hollsing A. Lung transplantation in patients with cystic fibrosis and Mycobacterium abscessus infection. J Cyst Fibros 2010; 9 (04) 272-276
  • 133 Qvist T, Pressler T, Thomsen VO, Skov M, Iversen M, Katzenstein TL. Nontuberculous mycobacterial disease is not a contraindication to lung transplantation in patients with cystic fibrosis: a retrospective analysis in a Danish patient population. Transplant Proc 2013; 45 (01) 342-345
  • 134 Robinson PD, Harris KA, Aurora P, Hartley JC, Tsang V, Spencer H. Paediatric lung transplant outcomes vary with Mycobacterium abscessus complex species. Eur Respir J 2013; 41 (05) 1230-1232
  • 135 Longworth SA, Vinnard C, Lee I, Sims KD, Barton TD, Blumberg EA. Risk factors for nontuberculous mycobacterial infections in solid organ transplant recipients: a case-control study. Transpl Infect Dis 2014; 16 (01) 76-83
  • 136 Longworth SA, Blumberg EA, Barton TD, Vinnard C. Non-tuberculous mycobacterial infections after solid organ transplantation: a survival analysis. Clin Microbiol Infect 2015; 21 (01) 43-47
  • 137 Morales P, Gil A, Santos M. Mycobacterium abscessus infection in transplant recipients. Transplant Proc 2010; 42 (08) 3058-3060
  • 138 Knoll BM, Kappagoda S, Gill RR. , et al. Non-tuberculous mycobacterial infection among lung transplant recipients: a 15-year cohort study. Transpl Infect Dis 2012; 14 (05) 452-460
  • 139 Chernenko SM, Humar A, Hutcheon M. , et al. Mycobacterium abscessus infections in lung transplant recipients: the international experience. J Heart Lung Transplant 2006; 25 (12) 1447-1455
  • 140 Choi H, Kim SY, Kim DH. , et al. Clinical characteristics and treatment outcomes of patients with acquired macrolide-resistant Mycobacterium abscessus lung disease. Antimicrob Agents Chemother 2017; 61 (10) 61
  • 141 Lyu J, Kim BJ, Kim BJ. , et al. A shorter treatment duration may be sufficient for patients with Mycobacterium massiliense lung disease than with Mycobacterium abscessus lung disease. Respir Med 2014; 108 (11) 1706-1712
  • 142 Koh WJ, Jeong BH, Jeon K. , et al. Oral macrolide therapy following short-term combination antibiotic treatment of Mycobacterium massiliense lung disease. Chest 2016; 150 (06) 1211-1221
  • 143 Zelazny AM, Root JM, Shea YR. , et al. Cohort study of molecular identification and typing of Mycobacterium abscessus, Mycobacterium massiliense and Mycobacterium bolletii. J Clin Microbiol 2009; 47: 1985-1995
  • 144 Harada T, Akiyama Y, Kurashima A. , et al. Clinical and microbiological differences between Mycobacterium abscessus and Mycobacterium massiliense lung diseases. J Clin Microbiol 2012; 50: 3556-3561
  • 145 Kim HY, Kook Y, Yun YJ. , et al. Proportions of Mycobacterium massiliense and Mycobacterium bolletii strains among Korean Mycobacterium chelonae-Mycobacterium abscessus group iso-lates. J Clin Microbiol 2008; 46: 3384-3390
  • 146 Lee SH, Yoo HK, Kim SH. , et al. The drug resistance profile of Mycobacterium abscessus group strains from Korea. Ann Lab Med 2014; 34: 31-37