Thromb Haemost 1993; 70(06): 0884-0893
DOI: 10.1055/s-0038-1649694
Review Article
Schattauer GmbH Stuttgart

The Platelet Cytoskeleton

Joan E B Fox
The Children’s Hospital Oakland Research Institute, Oakland, CA, USA
› Author Affiliations
Further Information

Publication History

Received 01 June 1993

Accepted after revision 30 July 1993

Publication Date:
06 July 2018 (online)

Summary

The platelet cytoskeleton contains two actin filament-based components. One is the cytoplasmic actin filaments which fill the cytoplasm and mediate contractile events. The other is the membrane skeleton, which coats the plasma membrane and regulates properties of the membrane such as its contours and stability. In the unstimulated platelet, only 30-40% of the actin is polymerized into filaments; the rest is thought to be prevented from polymerizing by the association of thymosin β4 with monomeric actin and by the association of gelsolin with the barbed ends of pre-existing actin filaments. When platelets are activated, there is a rapid increase in actin polymerization; new filaments fill the extending filopodia and form a network at the periphery of the platelet. As a result of activation, myosin binds to cytoplasmic actin filaments, causing them to move towards the center of the platelet. As platelets aggregate, additional cytoskeletal reorganizations occur: GP Ilb-IIIa associates with adhesive ligand in a platelet aggregate; this results in the association of GP Ilb-IIIa, membrane skeleton proteins, and signaling molecules with cytoplasmic actin. Future studies should help to elucidate the significance of the cytoskeleton in regulating signal transduction events in platelets.

 
  • References

  • 1 Fox JEB, Boyles JK, Reynolds CC, Phillips DR. Actin filament content and organization in unstimulated platelets. J Cell Biol 1984; 98: 1985-1991
  • 2 Jennings LK, Fox JEB, Edwards HH, Phillips DR. Changes in the cytoskeletal structure of human platelets following thrombin. J Biol Chem 1981; 256: 6927-6932
  • 3 Carlsson L, Markey F, Blikstad I, Persson T, Lindberg U. Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay. Proc Natl Acad Sci USA 1979; 76: 6376-6380
  • 4 Fox JEB, Phillips DR. Inhibition of actin polymerization in blood platelets by cytochalasins. Nature 1981; 292: 650-652
  • 5 Casella JF, Flanagan MD, Lin S. Cytochalasin D inhibits actin polymerization of actin filaments formed during platelet shape change. Nature 1981; 293: 302-305
  • 6 Karlsson R, Lassing I, Höglund A-S, Lindburg U. The organization of microfilaments in spreading platelets: a comparison with fibroblasts and glial cells. J Cell Physiol 1984; 121: 96-113
  • 7 White JG. Arrangements of actin filaments in the cytoskeleton of human platelets. Am J Pathol 1984; 117: 207-217
  • 8 Lindberg U, Markey F. Platelet microfilaments and motility. In: Platelets in Biology and Pathology III. MacIntyre Gordon. eds. Amsterdam: Elsevier; 1987. Chap 7.
  • 9 Hartwig JH. Mechanism of actin rearrangements mediating platelet activation. J Cell Biol 1992; 118: 1421-1442
  • 10 Fox JEB, Phillips DR. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem 1982; 257: 4120-4126
  • 11 Pollard TD, Fujiwara K, Handin R, Weiss G. Contractile proteins in platelet activation and contraction. Ann NY Acad Sci 1977; 283: 218-236
  • 12 Debus E, Weber K, Osborn M. The cytoskeleton of blood platelets viewed by immunofluorescence microscopy. Eur J Cell Biol 1981; 24: 45-52
  • 13 Painter RG, Ginsberg MH. Centripetal myosin redistribution in thrombin-stimulated platelets: relationship to platelet Factor 4 secretion. Exp Cell Res 1984; 155: 198-212
  • 14 Stark F, Golla RE, Nachmias VT. Formation and contraction of a microfilamentous shell in saponin-permeabilized platelets. J Cell Biol 1991; 112: 903-913
  • 15 Fox JEB. The platelet cytoskeleton. In: Thrombosis and Haemostasis 1987. Verstraete M, Vermylen J, Lijnen R, Amout J. eds. Leuven: Leuven University Press; 1987: 175-225
  • 16 Nachmias VT, Yoshida K. The cytoskeleton of the blood platelet: a dynamic structure. Adv Cell Biol 1988; 2: 181-211
  • 17 Hartwig JH, Kwiatkowski DJ. Actin-binding proteins. Curr Opin Cell Biol 1991; 3: 87-97
  • 18 Behnke O. Electron microscopical observations on the surface coating of human blood platelets. J Ultrastruct Res 1968; 24: 51-69
  • 19 Sixma JJ, Molenaar I. Microtubules and microfibrils in human platelets. Thromb Diath Haemorr 1966; 16: 153-162
  • 20 White JG. The submembrane filaments of blood platelets. Am J Pathol 1969; 56: 267-277
  • 21 Zucker-Franklin D. The submembranous fibrils of human blood platelets. J Cell Biol 1970; 47: 293-299
  • 22 Boyles J, Fox JEB, Phillips DR, Stenberg PE. Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage. J Cell Biol 1985; 101: 1463-1472
  • 23 Nakata T, Hirokawa N. Cytoskeletal reorganization of human platelets after stimulation revealed by the quick-freeze deep-etch technique. J Cell Biol 1987; 105: 1771-1780
  • 24 Hartwig JH, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991; 112: 407-425
  • 25 Fox JEB, Boyles JK, Bemdt MC, Steffen PK, Anderson LK. Identification of a membrane skeleton in platelets. J Cell Biol 1988; 106: 1525-1538
  • 26 Pruliere G, D’Albis A, Der Terrossian E. Effect of tropomyosin on the interactions of actin with actin-binding proteins isolated from pig platelets. Eur J Biochem 1986; 159: 535-547
  • 27 Dingus J, Hwo S, Bryan J. Identification by monoclonal antibodies and characterization of human platelet caldesmon. J Cell Biol 1986; 102: 1748-1757
  • 28 Pho DB, Desbruyeres E, Der Terrossian E, Olomucki A. Cytoskeletons of ADP- and thrombin-stimulated blood platelets. Presence of a caldesmon-like protein, a-actinin and gelsolin at different steps of the stimulation. FEBS Lett 1986; 202: 117-121
  • 29 Reinhard M, Halbrugge M, Scheer U, Wiegand C, Jockusch BM, Walter U. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. The EMBO J 1992; 11: 2063-2070
  • 30 Fox JEB. Linkage of a membrane skeleton to integral membrane glycoproteins in human platelets. Identification of one of the glycoproteins as glycoprotein lb. J Clin Invest 1985; 76: 1673-1683
  • 31 Fox JEB. Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes. J Biol Chem 1985; 260: 11970-11977
  • 32 Fox JEB, Reynolds CC, Morrow JS, Phillips DR. Spectrin is associated with membrane-bound actin filaments in platelets and is hydrolyzed by the Ca2+-dependent protease during platelet activation. Blood 1987; 69: 537-545
  • 33 Fox JEB, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JS. On the role of the membrane skeleton in mediating signal transduction. Association of GP IIb-IIIa, pp60c–src, pp62c–yes, and the p21rasGTPase-activating protein (GAP) with the membrane skeleton. J Biol Chem. 1993 In press
  • 34 Asijee GM, Sturk A, Bruin T, Wilkinson JM, Ten Cate JW. Vinculin is a permanent component of the membrane skeleton and is incorporated into the (re)organising cytoskeleton upon platelet activation. Eur J Biochem 1990; 189: 131-136
  • 35 Earnest J, Fox JEB. Manuscript in preparation.
  • 36 Solum NO, Olsen TM, Gogstad GO, Hagen I, Brosstad F. Demonstration of a new glycoprotein Ib-related component in platelet extracts prepared in the presence of leupeptin. Biochim Biophys Acta 1983; 729: 53-61
  • 37 Okita JR, Pidard D, Newman PJ, Montgomery RR, Kunicki TJ. On the association of glycoprotein Ib and actin-binding protein in human platelets. J Cell Biol 1985; 100: 317-321
  • 38 Andrews RK, Fox JEB. Interaction of purified actin-binding protein with the platelet membrane glycoprotein Ib-IX complex. J Biol Chem 1991; 266: 7144-7147
  • 39 Andrews RK, Fox JEB. Identification of a region in the cytoplasmic domain of the platelet membrane glycoprotein Ib-IX complex that binds to purified actin-binding protein. J Biol Chem 1992; 267: 18605-18611
  • 40 Kouns WC, Fox CF, Lamoreaux WJ, Coons LB, Jennings LK. The effect of glycoprotein IIb-IIIa receptor occupancy on the cytoskeleton of resting and activated platelets. J Biol Chem 1991; 266: 13891-13900
  • 41 Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 1988; 4: 487-525
  • 42 Painter RG, Prodouz KN, Gaarde W. Isolation of a subpopulation of glycoprotein IIb-III from platelet membranes that is bound to membrane actin. J Cell Biol 1985; 100: 652-657
  • 43 Painter RG, Gaarde W, Ginsberg MH. Direct evidence for the interaction of platelet surface membrane proteins GPIIb and III with cytoskeletal components: protein cross-linking studies. J Cell Biochem 1985; 27: 277-290
  • 44 Davies GE, Palek J. Platelet protein organization: analysis by treatment with membrane-permeable cross-linking reagents. Blood 1982; 59: 502-513
  • 45 Horwitz A, Duggan K, Buck C, Beckerle MC, Burridge K. Interaction of plasma membrane fibronectin receptor with talin – a transmembrane linkage. Nature 1986; 320: 531-533
  • 46 Otey CA, Pavalko FM, Burridge K. An interaction between α-actinin and the β1 integrin subunit in vitro. J Cell Biol 1990; 111: 721-729
  • 47 Markey F, Lindberg U, Eriksson L. Human platelets contain profilin, a potential regulator of actin polymerizability. FEBS Lett 1978; 88: 75-79
  • 48 Carlsson L, Nyström LE, Sundkvist I, Markey F, Lindberg U. Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 1977; 115: 465-483
  • 49 Lind SE, Janmey PA, Chaponnier C, Herbert T-J, Stossel TP. Reversible binding of actin to gelsolin and profilin in human platelet extracts. J Cell Biol 1987; 105: 833-842
  • 50 Pollard TN, Cooper JA. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 1986; 55: 0987-1035
  • 51 McLeod JF, Kowalski MA, Haddad Jr JG. Interactions among serum vitamin D binding protein, monomeric actin, profilin, and profilactin. J Biol Chem 1989; 264: 1260-1267
  • 52 Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard TD. The control of actin nucleotide exchange by thymosin β4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 1992; 3: 1015-1024
  • 53 Lassing I, Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 1985; 318: 472-474
  • 54 Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 1990; 247: 1575-1578
  • 55 Hartwig JH, Chambers KA, Hopcia KL, Kwiatkowski DJ. Association of profilin with filament-free regions of human leukocyte and platelet membranes and reversible membrane binding during platelet activation. J Cell Biol 1989; 109: 1571-1579
  • 56 Safer D, Golla R, Nachmias VT. Isolation of a 5-kilodalton actinsequestering peptide from human blood platelets. Proc Natl Acad Sci USA 1990; 87: 2536-2540
  • 57 Safer D, Elzinga M, Nachmias VT. Thymosin β4 and Fx, and actin-sequestering peptide, are indistinguishable. J Biol Chem 1991; 266: 4029-4032
  • 58 Weber A, Nachmias VT, Pennise CR, Pring M, Safer D. Interaction of thymosin β4 with muscle and platelet actin: implications for actin sequestration in resting platelets. Biochemistry 1992; 31: 6179-6185
  • 59 Hannappel E, Van Kampen M. Determination of thymosin β4 in human blood cells and serum. J Chromatogr 1987; 397: 279-285
  • 60 Goldschmidt-Clermont PJ, Machesky LM, Doberstein SK, Pollard TD. Mechanism of the interaction of human platelet profilin with actin. J Cell Biol 1991; 113: 1081-1089
  • 61 Pollard TD. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 1986; 103: 2747-2754
  • 62 Yin HL, Stossel TP. Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages. J Biol Chem 1980; 255: 9490-9493
  • 63 Yin HL, Albrecht JH, Fattoum A. Identification of gelsolin, a Ca2+- dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol 1981; 91: 901-906
  • 64 Hartwig JH, Chambers KA, Stossel TP. Association of gelsolin with actin filaments and cell membranes of macrophages and platelets. J Cell Biol 1989; 108: 467-479
  • 65 Janmey PA, Stossel TP. Modulation of gelsolin function by phosphatidyl-4,5-bisphosphate. Nature 1987; 325: 362-364
  • 66 Janmey PA, Iida K, Yin HL, Stossel TP. Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin. J Biol Chem 1987; 262: 12228-12236
  • 67 Cassimeris L, Safer D, Nachmias VT, Zigmond SH. Thymosin β4 sequesters the majority of G-actin in resting human polymorphonuclear leukocytes. J Cell Biol 1992; 119: 1261-1270
  • 68 Carlier MF, Jean C, Rieger KJ, Lenfant M, Pantaloni D. Modulation of the interaction between G-actin and thymosin β4 by the ATP/ADP ratio: Possible implication in the regulation of actin dynamics. Proc Natl Acad Sci USA 1993; 90: 5034-5038
  • 69 Carlier MF. Dynamic actin. Current Biology 1993; 3: 321-323
  • 70 Goldschmidt-Clermont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD. Regulation of phospholipase C-γ1 by profilin and tyrosine phosphorylation. Science 1991; 251: 1231-1233
  • 71 Rittenhouse SE. Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc Natl Acad Sci USA 1983; 80: 5417-5420
  • 72 Kucera GL, Rittenhouse SE. Human platelets form 3-phosphorylated phosphoinositides in response to a-thrombin, U46619, or GTPγS. J Biol Chem 1990; 265: 5345-5348
  • 73 Sultan C, Plantavid M, Bachelot C, Grondin P, Breton M, Mauco G, Levy-Toledano S, Caen JP, Chap H. Involvement of platelet glycoprotein IIb-IIIa (αIIb3 Integrin) in thrombin-induced synthesis of phosphatidylinositol 3’,4’-bisphosphate. J Biol Chem 1991; 266: 23554-23557
  • 74 Grondin P, Plantavid M, Sultan C, Breton M, Mauco G, Chap H. Interaction of pp60c–src, phospholipase C, inositol-lipid, and diacylglycerol kinases with the cytoskeletons of thrombin-stimulated platelets. J Biol Chem 1991; 266: 15705-15709
  • 75 Zhang J, Fry MJ, Waterfield MD, Jaken S, Liao L, Fox JEB, Rittenhouse SE. Activated phosphoinositide 3-kinase associates with membrane skeleton in thrombin-exposed platelets. J Biol Chem 1992; 267: 4686-4692
  • 76 Horvath AR, Muszbek L, Kellie S. Translocation of pp60c–srcto the cytoskeleton during platelet aggregation. The EMBO J 1992; 11: 885-861
  • 77 Beckerle MC, Miller DE, Bertagnolli ME, Locke SJ. Activationdependent redistribution of the adhesion plaque protein, talin, in intact human platelets. J Cell Biol 1989; 109: 3333-3346
  • 78 Litchfield DW, Ball EH. Phosphorylation of high molecular weight proteins in platelets treated with 12-O-tetradecanoylphorbol-13-acetate. Biochem Int 1990; 20: 615-621
  • 79 Carroll RC, Gerrard JM. Phosphorylation of platelet actin-binding protein during platelet activation. Blood 1982; 59: 466-471
  • 80 Wong S, Reynolds AB, Papkoff J. Platelet activation leads to increased c-src kinase activity and association of c-src with an 85-kDa tyrosine phosphoprotein. Oncogene 1992; 7: 2407-2415
  • 81 Wu H, Reynolds AB, Kanner SB, Vines RR, Parsons JT. Identification and characterization of a novel cytoskeleton-associated pp60srcsubstrate. Mol Cell Biol 1991; 11: 5113-5124
  • 82 Wu H, Parsons JT. Cortactin, an 80/85-kilodalton pp60srcsubstrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol 1993; 120: 1417-1426
  • 83 Phillips DR, Jennings LK, Edwards HH. Identification of membrane proteins mediating the interaction of human platelets. J Cell Biol 1980; 86: 77-86
  • 84 Ferrell Jr JE, Martin GS. Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proc Natl Acad Sci USA 1989; 86: 2234-2238
  • 85 Golden A, Brugge JS, Shattil SJ. Role of platelet membrane glycoprotein IIb-IIIa in agonist-induced tyrosine phosphorylation of platelet proteins. J Cell Biol 1990; 111: 3117-3127
  • 86 Fox JEB, Reynolds CC, Phillips DR. Calcium-dependent proteolysis occurs during platelet aggregation. J Biol Chem 1983; 258: 9973-9981
  • 87 Fox JEB, Taylor RG, Taffarel M, Boyles JK, Goll DE. Evidence that activation of platelet calpain is induced as a consequence of binding of adhesive ligand to the integrin, glycoprotein IIb-IIIa. J Cell Biol 1993; 120: 1501-1507
  • 88 Kornberg L, Earp HS, Parsons JT, Schaller M, Juliano RL. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem 1992; 267: 23439-23442
  • 89 Clark EA, Brugge JS. Redistribution of activated pp60c–srcto integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol Cell Biol 1993; 13: 1863-1871
  • 90 Lipfert L, Himovich B, Schaller M, Cobb BS, Parsons JT, Brugge JS. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase ppl25FAKin platelets. J Cell Biol 1992; 119: 905-912
  • 91 Fischer TH, Gatling MN, Lacal JC, White II GC. Rap1B, a cAMP-dependent protein kinase substrate, associates with the platelet cytoskeleton. J Biol Chem 1990; 265: 19405-19408
  • 92 Newman PJ, Hillery CA, Albrecht R, Parise LV, Berndt MC, Mazurov AV, Dunlop LC, Zhang J, Rittenhouse SE. Activationdependent changes in human platelet PECAM-1: phosphorylation, cytoskeletal association, and surface membrane redistribution. J Cell Biol 1992; 119: 239-246
  • 93 Fox JEB, Austin CD, Boyles JK, Steffen PK. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol 1990; 111: 483-493
  • 94 Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 1991; 252: 668-674
  • 95 Gutkind JS, Lacal PM, Robbins KC. Thrombin-dependent association of phosphatidylinositol-3 kinase with pp60c–srcand p59fynin human platelets. Mol Cell Biol 1990; 10: 3806-3809
  • 96 Fukui Y, O’Brien MC, Hanafusa H. Deletions in the SH2 domain of pp60v–srcprevent association with the detergent-insoluble cellular matrix. Mol Cell Biol 1991; 11: 1207-1213
  • 97 Brott BK, Decker S, O’Brien MC, Jove R. Molecular features of the viral and cellular Src kinases involved in interactions with the GTPase-activating protein. Mol Cell Biol 1991; 11: 5059-5067
  • 98 Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S. Oncogenes and signal transduction. Cell 1991; 64: 281-302
  • 99 Shattil SJ, Cunningham M, Wiedmer T, Zhao J, Sims PJ, Brass LF. Regulation of glycoprotein IIb-IIIa receptor function studied with platelets permeabilized by the pore-forming complement proteins C5b-9. J Biol Chem 1992; 267: 18424-18431