Thromb Haemost 1993; 70(05): 867-872
DOI: 10.1055/s-0038-1649685
Fibrinolysis
Schattauer GmbH Stuttgart

Interaction of Plasminogen Activators and Plasminogen with Heparin: Effect of Ionic Strength

Dingeman C Rijken
The TNO Institute of Ageing and Vascular Research (IVVO-TNO), Gaubius Laboratory, Leiden, The Netherlands
,
Gerard A W de Munk
The TNO Institute of Ageing and Vascular Research (IVVO-TNO), Gaubius Laboratory, Leiden, The Netherlands
,
Annie F H Jie
The TNO Institute of Ageing and Vascular Research (IVVO-TNO), Gaubius Laboratory, Leiden, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 25 March 1993

Accepted after revision 21 June 1993

Publication Date:
05 July 2018 (online)

Summary

In order to define the possible effects of heparin on the fibrinolytic system under physiological conditions, we studied the interactions of this drug with plasminogen and its activators at various ionic strengths. As reported in recent literature, heparin stimulated the activation of Lys-plasminogen by high molecular weight (HMW) and low molecular weight (LMW) two-chain urokinase-type plasminogen activator (u-PA) and two-chain tissue-type plasminogen activator (t-PA) 10- to 17-fold. Our results showed, however, that this stimulation only occurred at low ionic strength and was negligible at a physiological salt concentration. Direct binding studies were performed using heparin-agarose column chromatography. The interaction between heparin and Lys-plasminogen appeared to be salt sensitive, which explains at least in part why heparin did not stimulate plasminogen activation at 0.15 M NaCl. The binding of u-PA and t-PA to heparinagarose was less salt sensitive. Results were consistent with heparin binding sites on both LMW u-PA and the amino-terminal part of HMW u-PA. Single-chain t-PA bound more avidly than two-chain t-PA. The interactions between heparin and plasminogen activators can occur under physiological conditions and may modulate the fibrinolytic system.

 
  • References

  • 1 Vinazzer H, Stemberger A, Haas S, Blümel GB. Influence of heparin; of different heparin fractions and of a low molecular weight heparinlike substance on the mechanism of fibrinolysis. Thromb Res 1982; 27: 341-352
  • 2 Andrade-Gordon P, Strickland S. Interaction of heparin with plasminogen activators and plasminogen: Effects on the activation of plasminogen. Biochemistry 1986; 25: 4033-4040
  • 3 Pâques E-P, Stöhr H-A, Heimburger N. Study on the mechanism of action of heparin and related substances on the fibrinolysis system: Relationship between plasminogen activators and heparin. Thromb Res 1986; 42: 797-807
  • 4 Soeda S, Kakiki M, Shimeno H, Nagamatsu A. Localization of the binding sites of porcine tissue-type plasminogen activator and plasminogen to heparin. Biochim Biophys Acta 1987; 916: 279-287
  • 5 Fears R. Kinetic studies on the effect of heparin and fibrin on plasminogen activators. Biochem J 1988; 249: 077-081
  • 6 Dosne AM, Bendetowicz AV, Kher A, Samama M. Marked potentiation of the plasminogenolytic activity of pro-urokinase by unfractionated heparin and a low molecular-weight heparin. Thromb Res 1988; 51: 627-630
  • 7 Rydzewski A, Takada Y, Takada A. Stimulation of plasmin catalyzed conversion of single-chain to two-chain urokinase-type plasminogen activator by sulfated polysaccharides. Thromb Haemostas 1989; 62: 752-755
  • 8 Edelberg JM, Pizzo SV. Kinetic analysis of the effects of heparin and lipoproteins on tissue plasminogen activator mediated plasminogen activation. Biochemistry 1990; 29: 5906-5911
  • 9 Edelberg JM, Weissler M, Pizzo SV. Kinetic analysis of the effects of glycosaminoglycans and lipoproteins on urokinase-mediated plasminogen activtion. Biochem J 1991; 276: 785-791
  • 10 Kawamura H, Watanabe I, Urano T, Takada Y, Takada A. The effects of polysaccharides on plasminogen activation by single chain-and two chain-tissue plasminogen activator. Thromb Res 1991; 62: 481-490
  • 11 Andrade-Gordon P, Strickland S. Anticoagulant low molecular weight heparin does not enhance the activation of plasminogen by tissue plasminogen activator. J Biol Chem 1989; 264: 15177-15181
  • 12 Andrade-Gordon P, Strickland S. Fractionation of heparin by chromatography on a tissue plasminogen activator-Sepharose column. Proc Natl Acad Sci USA 1990; 87: 1865-1869
  • 13 Fry ETA, Sobel BE. Lack of interference by heparin with thrombolysis or binding of tissue-type plasminogen activator to thrombi. Blood 1988; 71: 1347-1352
  • 14 Fears R, Esmail AF, Greenwood HC. Effect of heparin o the fibrinolytic response to plasminogen activators. Semin Thromb Hemostas 1991; 17: 389-393
  • 15 Weitz JI, Kuint J, Leslie B, Hirsh J. Standard and low molecular weight heparin have no effect on tissue plasminogen activator induced plasma clot lysis or fibrinogenolysis. Thromb Haemostas 1991; 65: 541-544
  • 16 De MunkGAW, Groeneveld E, Rijken DC. Acceleration of the thrombin inactivtion of single-chain urokinase-type plasminogen activator (pro-urokinase) by thrombomodulin. J Clin Invest 1991; 88: 1680-1684
  • 17 Rijken DC, Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 1981; 256: 7035-7041
  • 18 Kluft C, Van WezelAL, Van derVelden CAM, Emeis JJ, Verheijen JH, Wijngaards G. Large-scale production of extrinsic (tissue-type) plasminogen activator from human melanoma cells. In: Advances in Biotechnological Processes 2. Mizrahi A, Van WezelAL. (eds) New York: Alan R Liss Inc; 1983: 098-110
  • 19 Verheijen JH, Mullaart E, Chang GTG, Kluft C, Wijngaards G. A simple, sensitive spectrophotometric assay for extrinsic (tissue-type) plasminogen activator applicable to measurements in plasma. Thromb Haemostas 1982; 48: 266-269
  • 20 Friberger P, Knös M, Gustavsson S. Methods for determination of plasmin, antiplasmin and plasminogen by means of substrate S-2251. Haemostasis 1978; 7: 138-145
  • 21 Granelli-Piperno A, Reich A. A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med 1978; 148: 223-234
  • 22 Griffith MJ. Kinetics of the heparin-enhanced antithrombin III/ thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem 1982; 257: 7360-7365
  • 23 Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78: 3114-3124
  • 24 Liberti PA, Stivala SS. Physiochemical studies of fractionated bovine heparin. II. Viscosity as a function of ionic strength. Arch Biochem Biophys 1967; 119: 510-518
  • 25 Stephens RW, Bokman AM, Myöhänen HT, Reisberg T, Tapiovaara H, Pedersen N, Grøndahl-Hansen J, Llinás VaheriA. Heparin binding to the urokinase kringle domain. Biochemistry 1992; 31: 7572-7579
  • 26 Lijnen HR, Collen D. Stimulation by heparin of the plasmin-mediated conversion of single-chain to two-chain urokinase-type plasminogen activator. Thromb Res 1986; 43: 687-690
  • 27 Molinari A, Giorgetti C, Lansen J, Vaghi F, Orsini G, Faioni EM, Mannucci PM. Thrombomodulin is a cofactor for thrombin degradation of recombinant single-chain urokinase plasminogen activator “in vitro” and in a perfused rabbit heart model. Thromb Haemostas 1992; 67: 226-232
  • 28 Günzler WA, Steffens GJ, Ötting F, Buse G, Flohé L. Structural relationship between human high and low molecular mass urokinase. Hoppe-Seyler’s Z Physiol Chem 1992; 363: 133-141
  • 29 Stump DC, Lijnen HR, Collen D. Purification and characterization of a novel low molecular weight form of single-chain urokinase-type plasminogen activator. J Biol Chem 1986; 261: 17120-17126
  • 30 Marcotte PA, Henkin J, Credo RB, Badylak SF. A-chain isozymes of recombinant and natural urokinases: preparation, characterization, and their biochemical and fibrinolytic properties. Fibrinolysis 1992; 6: 069-078
  • 31 De MunkGAW, Molinari A, Rijken DC. Inactivation of high and low molecular weight single-chain urokinase-type plasminogen activator (pro-urokinase) by thrombin in the presence of thrombomodulin. Thromb Haemostas 1993; 69: 88 (letter).
  • 32 De MunkGAW, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. Biochem J 1993; 290: 655-659
  • 33 Stein PL, Van ZonneveldA-J, Pannekoek H, Strickland S. Structural domains of human tissue-type plasminogen activator that confer stimulation by heparin. J Biol Chem 1989; 264: 15441-15444
  • 34 Van ZonneveldA-J, Veerman H, Pannekoek H. Autonomous functions of structural domains on human tissue-type plasminogen activator. Proc Natl Acad Sci USA 1986; 83: 4670-4674
  • 35 Verheijen JH, Caspers MPM, Chang GTG, De MunkGAW, Pouwels PH, Enger-Valk BE. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin. EMBO J 1986; 5: 3525-3530
  • 36 Higgins DL, Vehar GA. Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin. Biochemistry 1987; 26: 7786-7791
  • 37 Husain SS, Hasan AK, Budzynski AZ. Differences between binding of one-chain and two-chain tissue plasminogen activators to noncross-linked and cross-linked fibrin clots. Blood 1989; 74: 0999-1006
  • 38 Salonen E-M, Saksela O, Vartio T, Vaheri A, Nielsen LS, Zeuthen J. Plasminogen and tissue-type plasminogen activator bind to immobilized fibronectin. J Biol Chem 1985; 260: 12302-12307
  • 39 Young TN, Edelberg JM, Stack S, Pizzo SV. Ionic modulation of the effects of heparin on plasminogen activation by tissue plasminogen activator: The effects of ionic strength, divalent cations, and chloride. Arch Biochem Biophys 1992; 296: 530-538