Thromb Haemost 1976; 36(01): 027-036
DOI: 10.1055/s-0038-1648006
Original Article
Schattauer GmbH

γ-Dimerization, α-Polymerization, and Plasmin Degradation of Human Fibrin

Effect of Various Inhibitors of Factor XIII on the Patterns in SDS-Electrophoresis and Crossed Immunoelectrophoresis
J Carsten Feddersen
1   Coagulation Laboratory, Sundby Hospital, DK-2300 Copenhagen S, Denmark
,
Johs Gormsen
1   Coagulation Laboratory, Sundby Hospital, DK-2300 Copenhagen S, Denmark
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 25. Juni 1975

Accepted 06. März 1976

Publikationsdatum:
03. Juli 2018 (online)

Summary

The effect of different factor XIII inhibitors (competetive inhibition, interference with active center SH-groups in different ways, Ca2+ depletion) on the sequence of the γ-dimerization and α-polymerization of fibrin is examined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAE) (reduced material). They all inhibit either γ-dimerization and a-polymerization or a-polymerization alone irrespective of the factor XIII inhibitory mechanism.

Non-crosslinked fibrin and fibrin clots of different degrees of crosslinking are digested with plasmin and the lysate tested in SDS-PAE (non-reduced material) and crossed agarose gel Immunoelectrophoresis (CAIE). The digests contain Fragment D and Fragment D-D respectively and Fragment E. An additional Fragment E with less anodic mobility in CAIE, and not demonstrable in SDS-PAE, is seen in increasing amounts with increasing γ-dimerization, α-polymerization does not further change the CAIE patterns.

 
  • References

  • 1 Arnesen H. 1974; Characterization of fibrinogen and fibrin degradation products by isoelectric focusing in polyacrylamide gel. Thrombosis Research 4: 861.
  • 2 Boyer M. H, Shainoff J. R, Ratnoff O. D. 1972; Acceleration of fibrin polymerization by calcium ions. Blood 39: 382.
  • 3 Chen R, Doolittle R. F. 1970; Isolation, characterization, and location of donor - acceptor unit from crosslinked fibrin. Proceedings of the National Academy of Sciences of USA 66: 472.
  • 4 Chung S. I, Lewis M. S, Folk J. E. 1974; Relationship of the catalytic properties of human plasma and platelet transglutaminases (activated blood coagulation factor XIII) to their subunit structures. The Journal of Biological Chemistry 294: 940.
  • 5 Clarke H. G. M, Freeman T. 1968; Quantitative Immunoelectrophoresis of human serum proteins. Clinical Science 35: 403.
  • 6 Cooke R. D, Holbrook J. J. 1974; Calcium and the assays of human plasma clotting factor XHI. Biochemical Journal 141: 71.
  • 7 Curtis C. G, Brown K. L, Credo R. B, Domanik R. A, Gray A, Stenberg P, Lorand L. 1974; Calcium-dependant unmasking of active center cysteine during activation of fibrin stabilizing factor. Biochemistry 13: 3774.
  • 8 Doolittle R. F, Cassman K. G, Chen R, Sharp J. J, Wooding G. L. 1972. Correlation of the mode of fibrin polymerization with the pattern of cross-linking. In: Laki K. (ed.), The Biological Role of the Clot-Stabilizing Enzymes: Transglutaminase and Factor XIII. Annals of the New York Academy of Sciences; 202 114.
  • 9 Feddersen C, Gormsen J. 1971; Plasmin digestion of stabilized and non-stabilized fibrin illustrated by pH-stat titration and thrombelastography. Scandinavian Journal of Clinical and Laboratory Investigation 27: 175.
  • 10 Ferry J. D, Morrison P. R. 1947; Preparation and properties of serum and plasma proteins. VIII The conversion of human fibrinogen to fibrin under various conditions. Journal of American Chemical Society 69: 388.
  • 11 Gaffney P. J, Brasher M. 1973; Subunit structure of the plasmin-induced degradation products of crosslinked fibrin. Biochimica et Biophysica Acta 295: 308.
  • 12 Gaffney P. J, Lane D. A, Kakkar V. V, Brasher M. 1975; Characterisation of a soluble D dimer-E complex in crosslinked fibrin digests. Thrombosis Research 7: 89.
  • 13 Gormsen J, Feddersen C. 1972. Degradation of stabilized and nonstabilized fibrin clots by plasmin: An immunological study. In: Laki K. (ed.), The Biological Role of the Clot-Stabilizing Enzymes: Transglutaminase and Factor XIII. Annals of the New York Academy of Sciences; 202 329.
  • 14 Gormsen J, Feddersen C. 1973; Demonstration of different D- and E-antigenic intermediates during plasmin degradation of non-stabilized and stabilized fibrin clots. Scandinavian Journal of Haematology 10: 337.
  • 15 Gormsen J, Feddersen C. 1974; Degradation of noncrosslinked and crosslinked fibrin clots by plasmin, trypsin, Chymotrypsin, and brinase. Thrombosis Research 5: 125.
  • 16 Gormsen J, Feddersen C, Clemmensen I, Andersen R. B. 1972; Degradation of fibrinogen in vitro. Demonstration of several antigenic intermediates by specific anti-D and anti-E serum. Scandinavian Journal of Haematology 9: 577.
  • 17 Gormsen J, Fletcher A. P, Alkjaersig N, Sherry S. 1967; Enzymic lysis of plasma clots: The influence of fibrin stabilization on lysis rates. Archives of Biochemistry and Biophysics 120: 654.
  • 18 Hudry-Clergeon G, Patural L, Suscillon M. 1974; Identification d’un complexe (D-D) . .E dans les produits de dégradation de la fibrine bovine stabilisée par le facteur XIII. Pathologie et Biologie 22 (suppl.) 47.
  • 19 Kopec M, Teisseyre E, Dudek-Wojciechowska G, Kloczewiak M, Pankiewicz A, Latallo Z. S. 1973; Studies on the ‘double D’ Fragment from stabilized bovine fibrin. Thrombosis Research 2: 283.
  • 20 Laurell C. B. 1965; Antigen-antibody crossed electrophoresis. Analytical Biochemistry 10: 358.
  • 21 Lorand L, Chenoweth D. 1969; Intramolecular localization of the acceptor cross-linking sites in fibrin. Proceedings of the National Academy of Sciences 63: 1247.
  • 22 Lowry O. H, Rosebrough N. I, Farr A. L, Randall R. J. 1951; Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry 193: 265.
  • 23 Marder V. J, Budzynski A. Z. 1975; Data for defining fibrinogen and its plasmic degradation products. Thrombosis et Diathesis Haemorrhagica (Stuttg.) 33: 199.
  • 24 Neilands J. B, Stumpf P. K. 1958. Outlines of Enzyme Chemistry. 2. John Wiley and Sons, Inc.; New York: 118.
  • 25 Pizzo S.C, Schwartz M. L, Hill R. L, McKee P. A. 1972; The effect of plasmin on the subunit structure of human fibrinogen. Journal of Biological Chemistry 247: 636.
  • 26 Pizzo S. V, Schwartz M. L, Hill R. L, McKee P. A. 1973a The effect of plasmin on the subunit structure of human fibrin. Journal of Biological Chemistry 248: 4574.
  • 27 Pizzo S. V, Taylor L. M, Schwartz M. L, Hill R. L, McKee P. A. 1973b Subunit structure of Fragment D from fibrinogen and crosslinked fibrin. Journal, of Biological Chemistry 248: 4584.
  • 28 Schwarz M. L, Pizzo S. V, Hill R. L, McKee P. A. 1971; The effect of fibrin-stabilizing factor-stabilizing on the subunit structure of human fibrin. The Journal of Clinical Investigation 50: 1506.
  • 29 Schwartz M. L, Pizzo S. V, Hill R. L, McKEE P. A. 1973; Human factor XIII from plasma and platelets. Molecular weights, subunit structures, proteolytic activation, and crosslinking of fibrinogen and fibrin. Journal of Biological Chemistry 248: 1395.
  • 30 Sheltawy M. J, Miloszewski K, Losowsky M. S. 1972; Factors affecting factor XIII assay by dansyl cadaverine incorporation. Thrombosis et Diathesis Haemorrhagica (Stuttg.) 28: 483.
  • 31 Smith G. F, Bang N. U. 1972; Formation of soluble fibrin polymers. Fibrinogen degradation Fragments D and E fail to form soluble complexes with fibrin monomer. Biochemistry 11: 2958.
  • 32 Tyler H. M. 1970; Studies on the activation of purified human factor XIII. Biochimica et Biophysica Acta 222: 396.
  • 33 Weber K, Osborn M. 1969; The reliability of molecular weight determinations by dodecyl sulphate polyacrylamide gel electrophoresis. Journal of Biological Chemistry 244: 4406.