Thromb Haemost 1994; 71(03): 300-304
DOI: 10.1055/s-0038-1642434
Original Article
Schattauer GmbH Stuttgart

Ex-Vivo and In-Vitro Evidence that Low Molecular Weight Heparins Exhibit Less Binding to Plasma Proteins than Unfractionated Heparin

Edward Young
1   The Hamilton Civic Hospitals Research Centre and the Department of Pathology, McMaster University, Hamilton, Canada
,
Philip Wells
2   The Hamilton Civic Hospitals Research Centre and the Department of Medicine, McMaster University, Hamilton, Canada
,
Scott Holloway
3   The Dept. of Clinical Research and Development, Wyeth-Ayerst, Philadelphia, USA
,
Jeffrey Weitz
2   The Hamilton Civic Hospitals Research Centre and the Department of Medicine, McMaster University, Hamilton, Canada
,
Jack Hirsh
2   The Hamilton Civic Hospitals Research Centre and the Department of Medicine, McMaster University, Hamilton, Canada
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 17. Juni 1993

Accepted after revision 09. Dezember 1993

Publikationsdatum:
06. Juli 2018 (online)

Summary

We have compared the non-specific binding of unfractionated heparin (UFH) with that of low molecular weight heparin (LMWFl) to plasma proteins both ex vivo and in vitro. Non specific binding to plas ma proteins was assessed by comparing the heparin levels measured as anti-factor Xa activity before and after the addition of low affinity heparin, which is essentially devoid of anti-factor Xa activity, in order to displace heparin bound to plasma proteins. For the ex-vivo studies, we compared the recovery of UFH and a LMWH (ardeparin) from the plasma of patients participating in a randomized trial of post operative venous thrombosis prophylaxis. For the in-vitro studies, we compared the recovery of UFH and 4 different LMWHs when added to the plasma from healthy volunteers and from patients with suspected venous thromboembolic disease. The results indicate that the recovery of LMWH is much less affected by nonspecific binding to plasma proteins both ex-vivo and in-vitro. In addition, there are differences between the LMWHs with respect to their plasma protein-binding.

 
  • References

  • 1 Prandoni P, Lensing AW A, Buller HR, Carta M, Cogo A, Vigo M, Casara D, Ruol A, ten Cate JW. Comparison of subcutaneous low-molecular-weight heparin with intravenous standard heparin in proximal deep-vein thrombosis. Lancet 1992; 339: 441-5
  • 2 Hull RD, Raskob GE, Pineo GF, Green D, Trowbridge AA, Elliott CG, Lerner RG, Hall J, Sparling T, Brettell HR, Norton J, Carter CJ, George R, Merli G, Ward J, Mayo W, Rosenbloom D, Brant R. Subcutaneous low-molecular weight hopnrin compared with continuous intravenous heparin in the treatment of proximal-vein Ihmmbosis. N Engl J Med 1992; 326: 975-82
  • 3 Hirsh J, Levine MN. Low molecular weight heparin. Blood 1992; 79: 1-17
  • 4 Bara L, Billaud E, Gramond G, Kher A, Samama M. Comparative pharmacokinetics of a low molecular weight heparin (PK 10169) and unfractionated heparin after intravenous and subcutaneous administration. Thromb Res 1985; 39: 631-6
  • 5 Bratt G, Tornebohm E, Widlund L, Lockner D. Low molecular weight heparin (KABI2165, Fragmin): pharmacokinetics after intravenous and subcutaneous administration in human volunteers. Thromb Res 1986; 42: 613-20
  • 6 Frydman AM, Bara L, Lc Roux Y, Wolcr M, Chauliac F, Samama MM. The antithrombotic activity and pharmacokinetics of enoxaparin, a low molecular weight heparin, in humans given single subcutaneous doses of 20 to 80 mg. J Clin Pharmacol 1988; 28: 609-18
  • 7 Handeland GF, Abildgaard GF, Holm U, Arnesen KE. Dose adjusted heparin treatment of deep venous thrombosis: a comparison of unfractionated and low molecular weight heparin. Eur J Clin Pharmacol 1990; 39: 107-12
  • 8 Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta 1985; 845: 196-203
  • 9 McKay EJ, Laurell CB. The interaction of heparin with plasma proteins. Demonstration of different binding sites for antithrombin III complexes and antithrombin III. J Lab Clin Med 1980; 95: 69-80
  • 10 Lane DA. Heparin binding and neutralizing proteins. In: Heparin, Chemical and Biological Properties, Clinical Applications. Lane DA, Lindahl U. (eds). CRC Press; Boca Raton, FL: 1989: 363-91
  • 11 Lijnen HR, Hoylaerts M, Collen D. Heparin binding properties of human histidine-rich glycoprotein. Mechanism and role in the neutralization of heparin in plasma. J Biol Chem 1983; 258: 3803-8
  • 12 Rucinski B, Niewiarowski S, Strzyzewski M, Holt JC, Mayo KH. Human platelet factor 4 and its C-terminal peptides: heparin binding and clearance from the circulation. Thromb Haemostas 1990; 63: 493-8
  • 13 Mosesson MW, Amrani DL. The structure and biologic activities of plasma fibronectin. Blood 1980; 56: 145-58
  • 14 Preissner KT, Muller-Berghaus G. Neutralization and binding of heparin by S-protein/vitronectin in the inhibition of factor Xa by antithrombin III. J Biol Chem 1987; 262: 12247-53
  • 15 Sobel M, McNeill PM, Carlson PL, Kermode JC, Adelman B, Conroy R, Marques D. Heparin inhibition of von Willebrand factor-dependent platelet function in vitro and in vivo. J Clin Invest 1991; 87: 1787-93
  • 16 Young E, Hirsh J. Contribution of red blood cells to the saturable mechanism of heparin clearance. Thromb Haemostas 1990; 64: 559-63
  • 17 Young E, Prins M, Levine MN, Hirsh J. Heparin binding to plasma pro teins, an important mechanism for heparin resistance. Thromb Haemostas 1992; 67: 639-43
  • 18 Young E, Cosmi B, Weitz J, Hirsh J. Comparison of the non-specific binding of unfractionated heparin and low molecular weight heparin (Enoxaparin) to plasma proteins. Thromb Haemostas 1993; 70: 625-30
  • 19 Young E, Petrowski P, Wells P, Hirsh J. Reduced binding of low molecular weight heparins to plasma proteins. Circulation 1992; 86: 1-869 (Abstract).
  • 20 Casu B, Diamantini G, Fedeli G, Mantovani M, Oreste P, Pescador R, Porta R, Prino G, Torri G, Zoppetti G. Retention of antilipemic activity by periodated-oxidized non anticoagulant heparins. Arzneim Forsch/Drug Res 1986; 36: 637-42
  • 21 Teien AN, Lie M. Evaluation of an amidolytic heparin assay method: increased sensitivity by adding purified antithrombin III. Thromb Res 1977; 10: 399-110
  • 22 Larsen ML, Abildgaard U, Teien AN, Gjesdal K. Assay of plasma heparin using thrombin and the chromogenic substrate H-D-Phc-Pip-Arg-pNA. Thromb Res 1978; 13: 285-8
  • 23 Young E. The monitoring of low molecular weight (LMW) heparins in the clinical chemistry laboratory. Abstracts of the 4th Asian-Pacific Congress of Clinical Chemistry 1988: 160
  • 24 Hirsh J. Heparin. N Engl J Med 1991; 324: 1565-74
  • 25 Gallus AS, Hirsh J, Tuttle RJ, Trebilcock R, O’Brien SE, Carroll JJ, Minden JH, Hudecki M. Small subcutaneous doses of heparin in prevention of venous thrombosis. N Engl J Med 1973; 288: 545-51
  • 26 Holmer E, Soderberg K, Bergqvist D, Lindahl U. Heparin and its low molecular weight derivatives. Anticoagulant and antithrombotic properties. Haemostasis 1986; 16: 1-7 (Suppl. 2).
  • 27 Cruickshank MK, Levine MN, Hirsh J, Roberts R, Siguenza M. A standard heparin nomogram for the management of heparin therapy. Arch Intern Med 1991; 151: 333-7
  • 28 Hull RD, Raskob GE, Hirsh J, Jay RM, Leclerc JR, Geerts WH, Rosenbloom D, Sackett DL, Anderson C, Harrison L, Gent M. Continuous intravenous heparin compared with intermittent subcutaneous heparin in the initial treatment of proximal-vein thrombosis. N Engl J Med 1986; 315: 1109-14