Semin Musculoskelet Radiol 2018; 22(03): 299-306
DOI: 10.1055/s-0038-1641574
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Imaging Patterns of Muscle Atrophy

Marc-André Weber
1   Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
,
Marcel Wolf
2   Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
,
Mike P. Wattjes
3   Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
23 May 2018 (online)

Abstract

The role of muscle imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI) is increasingly being used for diagnostic purposes, especially with its capability of whole-body musculature assessment. The assessment and quantification of muscle involvement in muscle diseases can be of diagnostic value by identifying a certain involvement pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more recently the role of imaging has gone beyond diagnostic purposes and includes disease as well as treatment monitoring. Conventional and quantitative muscle MRI techniques allow for the detection of subclinical disease progression (e.g., in muscular dystrophies) and is a powerful surrogate outcome measure in clinical trials. We present and discuss recent data on the role of conventional and quantitative MRI in the diagnosis and monitoring of inherited dystrophic muscle diseases as well as muscle denervation.

 
  • References

  • 1 Wattjes MP, Fischer D. , eds. Neuromuscular Imaging. New York, NY: Springer Science + Business Media; 2013
  • 2 Wattjes MP, Kley RA, Fischer D. Neuromuscular imaging in inherited muscle diseases. Eur Radiol 2010; 20 (10) 2447-2460
  • 3 Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol 2016; 23 (04) 688-703
  • 4 Díaz-Manera J, Llauger J, Gallardo E, Illa I. Muscle MRI in muscular dystrophies. Acta Myol 2015; 34 (2-3): 95-108
  • 5 Fischer D, Bonati U, Wattjes MP. Recent developments in muscle imaging of neuromuscular disorders. Curr Opin Neurol 2016; 29 (05) 614-620
  • 6 Bonati U, Schmid M, Hafner P. , et al. Longitudinal 2-point Dixon muscle magnetic resonance imaging in Becker muscular dystrophy. Muscle Nerve 2015; 51 (06) 918-921
  • 7 Fischer D, Clemen CS, Olivé M. , et al. Different early pathogenesis in myotilinopathy compared to primary desminopathy. Neuromuscul Disord 2006; 16 (06) 361-367
  • 8 Quijano-Roy S, Avila-Smirnow D, Carlier RY. ; WB-MRI muscle study group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 2012; 22 (Suppl. 02) S68-S84
  • 9 Kesper K, Kornblum C, Reimann J, Lutterbey G, Schröder R, Wattjes MP. Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand 2009; 120 (02) 111-118
  • 10 Schmidt GP, Reiser MF, Baur-Melnyk A. Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skeletal Radiol 2007; 36 (12) 1109-1119
  • 11 Kornblum C, Lutterbey GG, Czermin B. , et al. Whole-body high-field MRI shows no skeletal muscle degeneration in young patients with recessive myotonia congenita. Acta Neurol Scand 2010; 121 (02) 131-135
  • 12 Morrow JM, Sinclair CD, Fischmann A. , et al. Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. Eur Radiol 2014; 24 (07) 1610-1620
  • 13 Fischmann A, Morrow JM, Sinclair CD. , et al. Improved anatomical reproducibility in quantitative lower-limb muscle MRI. J Magn Reson Imaging 2014; 39 (04) 1033-1038
  • 14 Schramm N, Weckbach S, Eustace S, Long NM. Whole-body MRI for evaluation of the entire muscular system. In: Weber M-A. , ed. Magnetic Resonance Imaging of the Skeletal Musculature. Berlin, Germany: Springer; 2013
  • 15 Fischmann A, Hafner P, Fasler S. , et al. Quantitative MRI can detect subclinical disease progression in muscular dystrophy. J Neurol 2012; 259 (08) 1648-1654
  • 16 Regula JU, Jestaedt L, Jende F, Bartsch A, Meinck HM, Weber MA. Clinical muscle testing compared with whole-body magnetic resonance imaging in facio-scapulo-humeral muscular dystrophy. Clin Neuroradiol 2016; 26 (04) 445-455
  • 17 Ma J. Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008; 28 (03) 543-558
  • 18 Weber MA, Nagel AM, Marschar AM. , et al. 7-T 35Cl and 23Na MR imaging for detection of mutation-dependent alterations in muscular edema and fat fraction with sodium and chloride concentrations in muscular periodic paralyses. Radiology 2016; 280 (03) 848-859
  • 19 Peterson P, Romu T, Brorson H, Dahlqvist Leinhard O, Månsson S. Fat quantification in skeletal muscle using multigradient-echo imaging: Comparison of fat and water references. J Magn Reson Imaging 2016; 43 (01) 203-212
  • 20 Weber MA. , ed. Magnetic Resonance Imaging of the Skeletal Musculature. Berlin, Germany: Springer; 2014
  • 21 Weber MA, Nagel AM, Wolf MB. , et al. Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscle degeneration. J Neurol 2012; 259 (11) 2385-2392
  • 22 Wattjes MP, Fischmann A, Fischer D. Imaging of primary muscular diseases : What do neurologists expect from radiologists? [in German]. Radiologe 2017; 57 (12) 1005-1011
  • 23 Goodwin DW. Imaging of skeletal muscle. Rheum Dis Clin North Am 2011; 37 (02) 245-251 , vi–vii
  • 24 Kornblum C, Lutterbey G, Bogdanow M. , et al. Distinct neuromuscular phenotypes in myotonic dystrophy types 1 and 2 : a whole body highfield MRI study. J Neurol 2006; 253 (06) 753-761
  • 25 Mercuri E, Talim B, Moghadaszadeh B. , et al. Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1). Neuromuscul Disord 2002; 12 (7-8): 631-638
  • 26 Fischer D, Kley RA, Strach K. , et al. Distinct muscle imaging patterns in myofibrillar myopathies. Neurology 2008; 71 (10) 758-765
  • 27 Poliachik SL, Friedman SD, Carter GT, Parnell SE, Shaw DW. Skeletal muscle edema in muscular dystrophy: clinical and diagnostic implications. Phys Med Rehabil Clin N Am 2012; 23 (01) 107-122 , xi
  • 28 Zaidman CM, Hobson-Webb LD. Imaging of skeletal muscle in neuromuscular disease: a clinical perspective. In: Weber M-A. , ed. Magnetic Resonance Imaging of the Skeletal Musculature. Berlin, Germany: Springer; 2013
  • 29 Mercuri E, Pichiecchio A, Allsop J, Messina S, Pane M, Muntoni F. Muscle MRI in inherited neuromuscular disorders: past, present, and future. J Magn Reson Imaging 2007; 25 (02) 433-440
  • 30 Fleckenstein JL, Watumull D, Conner KE. , et al. Denervated human skeletal muscle: MR imaging evaluation. Radiology 1993; 187 (01) 213-218
  • 31 Goyault G, Bierry G, Holl N. , et al. Diffusion-weighted MRI, dynamic susceptibility contrast MRI and ultrasound perfusion quantification of denervated muscle in rabbits. Skeletal Radiol 2012; 41 (01) 33-40
  • 32 Holl N, Echaniz-Laguna A, Bierry G. , et al. Diffusion-weighted MRI of denervated muscle: a clinical and experimental study. Skeletal Radiol 2008; 37 (12) 1111-1117
  • 33 Polak JF, Jolesz FA, Adams DF. Magnetic resonance imaging of skeletal muscle. Prolongation of T1 and T2 subsequent to denervation. Invest Radiol 1988; 23 (05) 365-369
  • 34 Uetani M, Hayashi K, Matsunaga N, Imamura K, Ito N. Denervated skeletal muscle: MR imaging. Work in progress. Radiology 1993; 189 (02) 511-515
  • 35 Wessig C, Koltzenburg M, Reiners K, Solymosi L, Bendszus M. Muscle magnetic resonance imaging of denervation and reinnervation: correlation with electrophysiology and histology. Exp Neurol 2004; 185 (02) 254-261
  • 36 Bendszus M, Koltzenburg M. Visualization of denervated muscle by gadolinium-enhanced MRI. Neurology 2001; 57 (09) 1709-1711
  • 37 Costa AF, Di Primio GA, Schweitzer ME. Magnetic resonance imaging of muscle disease: a pattern-based approach. Muscle Nerve 2012; 46 (04) 465-481
  • 38 Kim SJ, Hong SH, Jun WS. , et al. MR imaging mapping of skeletal muscle denervation in entrapment and compressive neuropathies. Radiographics 2011; 31 (02) 319-332
  • 39 Schwarz D, Weiler M, Pham M, Heiland S, Bendszus M, Bäumer P. Diagnostic signs of motor neuropathy in MR neurography: nerve lesions and muscle denervation. Eur Radiol 2015; 25 (05) 1497-1503
  • 40 Tepeli B, Karataş M, Coşkun M, Yemişçi OÜ. A comparison of magnetic resonance imaging and electroneuromyography for denervated muscle diagnosis. J Clin Neurophysiol 2017; 34 (03) 248-253
  • 41 Bendszus M, Koltzenburg M, Wessig C, Solymosi L. Sequential MR imaging of denervated muscle: experimental study. AJNR Am J Neuroradiol 2002; 23 (08) 1427-1431
  • 42 West GA, Haynor DR, Goodkin R. , et al. Magnetic resonance imaging signal changes in denervated muscles after peripheral nerve injury. Neurosurgery 1994; 35 (06) 1077-1085 ; discussion 1085–1086
  • 43 Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1994; (304) 78-83