Yearb Med Inform 2002; 11(01): 131-148
DOI: 10.1055/s-0038-1638122
Review
Georg Thieme Verlag KG

Imaging Informatics and the Human Brain Project: the Role of Structure

J.F. Brinkley
1   Structural Informatics Group Department of Biological Structure University of Washington Seattle, USA
,
C. Rosse
1   Structural Informatics Group Department of Biological Structure University of Washington Seattle, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
05 March 2018 (online)

 

 
  • References

  • 1 Koslow SH, Huerta MF. editors Neuroinformatics: an overview of the Human Brain Project. Mahwah, New Jersey: Lawrence Erlbaum; 1997
  • 2 Chicurel M. Databasing the brain. Nature 2000; 406: 822-5.
  • 3 Kahn J. Let’s make your head interactive. Wired. 2001. August 107-15.
  • 4 Pechura C, Martin J. Mapping the brain and its functions: integrating enabling technologies into neuroscience research. Institute of Medicine Pub 91-108: National Academy Press. 1991
  • 5 Heurta M, Koslow S. Neuroinformatics: opportunities across disciplinary and nationalborders. Neuroimage 1996; 4: S4-S6.
  • 6 Rosse C, Mejino JL, Modayur BR, Jakobovits RM, Hinshaw KP, Brinkley JF. Motivation and organizational principles for anatomical knowledge representation: the Digital Anatomist symbolic knowledge base. J Am Med Inform Assoc 1998; 5 (01) 17-40.
  • 7 Brinkley JF. Structural informatics and its applications in medicine and biology. Acad Med 1991; 66 (10) 589-91.
  • 8 Kulikowski CA. Medical imaging informatics: challenges of definition and integration. J Am Med Inform Assoc 1997; 4 (03) 252-3.
  • 9 Ambrogi L. Manual of Histologic and Special Staining Techniques. 2nd ed. New York: Mc-Graw-Hill; 1960
  • 10 Peters A, Palay S, Webster H. The Fine Structure of the Nervous System: Neurons and their Supporting Cells. 3rd ed. New York: Oxford Press; 1991
  • 11 Crusio WE, Gerlai RT. editors Handbook of molecular-genetic techniques for brain and behavior research. Amsterdam; New York: Elsevier; 1999
  • 12 Zimmerman RA, Gibby WA, Carmody RF. editors Neuroimaging: clinical and physical principles. New York: Springer; 2000
  • 13 Jacobs RE, Ahrens ET, Dickenson ME, Laidlaw D. Towards a micro MRI atlas of mouse development. Comput Med Imaging Graph 1999; 23 (01) 15-24. http://waggle.gg.caltech.edu/hbp/index.html
  • 14 Wilson T. Confocal Microscopy. San Diego: Academic Press Ltd; 1990
  • 15 Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T. Electron tomography of neuronal mitochondria: Three-dimensional structure and organization of cristae and menbrane contacts. J Struct Biol 1997; 119 (03) 260-72.
  • 16 Prothero JS, Prothero JW. Threedimensional reconstruction from serial sections IV. The reassembly problem. Comput Biomed Res 1986; 19 (04) 361-73.
  • 17 Spitzer VM, Whitlock DG. The Visible Human Dataset: the anatomical platform for human simulation. Anat Rec 1998; 253 (02) 49-57.
  • 18 Fiala JC, Harris KM. Extending unbiased stereology of brain ultrastructure to three-dimensional volumes. J Am Med Assoc 2001; 8 (01) 1-16.
  • 19 Soto GE, Young SJ, Martone ME, Deerinick TJ, Lamont SL, Carragher BO. et al. Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage 1994; 1: 230-43. http://ncmir.ucsd.edu/abstracts.html #Neuroimage_1
  • 20 Agrawal M, Harwood D, Duraiswami R, Davis LS, Luther PW. Three-dimensional ultrastructure from transmission electron micropscope tilt series. In: Proceedings, Second Indian Conference on Vision, Graphics and Image Processing. Bangalore, India: 2000. http://www.umiacs.umd.edu/~mla/tem/icvgipfinal.pdf
  • 21 Modayur B, Prothero J, Ojemann G, Maravilla K, Brinkley JF. Visualization-based mapping of language function in the brain. Neuroimage 1997; 6: 245-58.
  • 22 Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18 (02) 192-205.
  • 23 Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 1992; 16: 620-633.
  • 24 Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated algorithm. J Comput Assist Tomogr 1993; 17: 536-46.
  • 25 Ashburner J, Friston KJ. Multimodal image coregistration and partitioning-a unified framework. Neuroimage 1997; 6 (03) 209-17.
  • 26 MacDonald D. Register: McConnel Brain Imaging Center, Montreal Neurological Institute. 1993
  • 27 Lichtenbelt B, Crane R, Naqvi S. Introduction to Volume Rendering. Upper Saddle River, N.J: Prentice Hall; 1998
  • 28 Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999; 9 (02) 179-94.
  • 29 Collins DL, Holmes DJ, Peters TM, Evans AC. Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 1995; 3: 190-208.
  • 30 MacDonald D, Kabani N, Avis D, Evans AC. Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 2000; 12 (03) 340-56.
  • 31 Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH. An integrated software suite for surfacebased analysis of cerebral cortex. J Am Med Inform Assoc 2001; 8 (05) 443-59. http://stp.wustl.edu
  • 32 Hinshaw KP, Poliakov AV, Martin RF, Moore EB, Shapiro LG, Brinkley JF. Shape-based cortical surface segmentation in a workflow environment for visualization brain mapping. 2001 http://sig.biostr.washington.edu/publications/online/hinshawbrain01.pdf
  • 33 Brain Innovation B.V. Brain Voyager. http://www.BrainVoyager.de/ 2001
  • 34 Ng Y, Shiffman S, Brosnan TJ, Links JM, Beach LS, Judge NS. et al. Brain Image J: A java-based framework for interoperability in neuroscience, with specific application to neuroimaging. J Am Med Inform Assoc 2001; 8 (05) 431-42.
  • 35 Kennedy D. Internet Brain Segmentation Repository. http://neuro-www.mgh.harvard.edu/cma/ibsr/ 2001
  • 36 Prothero JS, Prothero JW. Threedimensional reconstruction from serial sections: I. A portable microcomputerbased software package in Fortran. Comput Biomed Res 1982; 15: 598-604.
  • 37 Foley JD. Computer graphics: Principles and Practice. Reading, Mass: Addison-Wesley; 2001
  • 38 Shapiro LG, Stockman GC. Computer Vision. Upper Saddle River, N.J: Prentice Hall; 2001
  • 39 Choi HS, Haynor DR, Kim Y. Partial volume tissue classification of multichannel magnetic resonance images-a mixel model. IEEE Trans Med Imaging 1991; 10 (03) 395-407.
  • 40 Zijdenbos AP, Evans AC, Riahi F, Sled J, Chui J, Kollokian V. Automatic quantification of multiple sclerosis lesion volume using stereotactic space. In: Proc. 4th Int. Conf. on Visualization in Biomedical Computing. Hamburg. 1996: 439-48.
  • 41 Davatzikos C, Bryan RN. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Trans Med Imaging 1996; 15 (06) 785-95.
  • 42 Haralick RM. Mathematical Morphology: University of Washington. 1988
  • 43 Sandor S, Leahy R. Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans Med Imaging 1997; 16 (01) 41-54.
  • 44 Lorensen WE, Cline HE. Marching cubes: a high resolution 3-D surface construction algorithm. Comput Graph (ACM) 1987; 21 (04) 163-9.
  • 45 Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. International Journal of Computer Vision 1987; 1 (04) 321-31.
  • 46 Brinkley JF. Hierarchical geometric constraint networks as a representation for spatial structural knowledge. In: Proceedings, 16th Annual Symposium on Computer Applications in Medical Care. 1992: 140-4.
  • 47 Brinkley JF. Knowledge-driven ultrasonic three-dimensional organ modelling. PAMI 1985; PAMI-7 (04) 431-41.
  • 48 Brinkley JF. A flexible, generic model for anatomic shape: application to interactive two-dimensional medical image segmentation and matching. Comput Biomed Res 1993; 26: 121-42.
  • 49 Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999; 9 (02) 195-207.
  • 50 Wellcome Department of Cognitive Neurology. Statistical Parametric Mapping http://www.fil.ion.ucl.ac.uk/spm/ 2001
  • 51 Sensor Systems Inc. MedEx http://medx.sensor.com/products/medx/index.html 2001
  • 52 Brinkley JF, Wong BA, Hinshaw KP, Rosse C. Design of an anatomy information system. Computer Graphics and Applications 1999; 19 (03) 38-48.
  • 53 Wong BA, Rosse C, Brinkley JF. Semiautomatic scene generation using the Digital Anatomist Foundational Model. In: Proceedings, American Medical Informatics Association Fall Symposium. Washington, D.C: 1999: 637-41.
  • 54 Rosse C, Tuttle MS. Explaining the brain to a computer. In: Human Brain Project Annual Meeting. 2001. http://www.nimh.nih.gov/neuroinformatics/rosse2001.cfm
  • 55 Gardner D, Abato M, Knuth KH, DeBellis R, Gardner EP. A functional ontology for neuroinformatics. In: Human Brain Project Annual Meeting. 2001. http://www.nimh.nih.gov/neuroinformatics/gardner2001.cfm
  • 56 International Anatomical Nomenclature Committee. Nomina Anatomica. 6th ed. Edinburgh: Churchill Livingstone; 1989
  • 57 Federative Committee on Anatomical Terminology. Terminologia Anatomica. Stuttgart: Thieme; 1998
  • 58 National Library of Medicine. Medical Subject Headings-Annotated Alphabetic List Bethesda, MD: U.S. Department of Health and Human Services, Public Health Service 1999
  • 59 Spackman KA, Campbell KE, Cote RA. SNOMED-RT: A reference terminology for health care. In Masys DR. editor Proceedings, AMIA Annual Fall Symposium. Philadelphia: Hanley and Belfus; 1997: 640-4.
  • 60 Schultz EB, Price C, Brown PJB. Symbolic anatomic knowledge representation in the Read Codes Version 3: Structure and application. J Am Med Inform Assoc 1997; 4: 38-48.
  • 61 Rector AL, Nowlan WA, Glowinski A. Goals for concept representation in the GALEN project. In Safran C. editor Proceedings of the 17th Annual Symposium on Computer Applications in Medical Care (SCAMC 93). New York: McGraw Hill; 1993: 414-8.
  • 62 Bowden DM, Martin RF. Neuronames brain hierarchy. Neuroimage 1995; 2: 63-83.
  • 63 Lindberg DAB, Humphreys BL, McCray AT. The unified medical language system. Methods Inf Med 1993; 32 (04) 281-91.
  • 64 Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego: Academic Press; 1986
  • 65 Bloom FE, Young WG. Brain Browser. New York: Academic Press; 1993
  • 66 Swanson LW. Brain maps: structure of the rat brain. Amsterdam; New York: Elsevier; 1992
  • 67 Franklin KBJ, Paxinos G. The mouse brain in stereotactic coordinates. San Diego: Academic Press; 1997
  • 68 Rosse C. Terminologia Anatomica; considered from the perspective of nextgeneration knowledge sources. Clin Anat 2000; 14: 120-33. http://sig.biostr.washington.edu/share/pubs/CRTAnat.pdf
  • 69 Rosse C, Shapiro LG, Brinkley JF. The Digital Anatomist foundational model: principles for defining and structuring its concept domain. In: Proceedings, American Medical Informatics Association Fall Symposium. Orlando, Florida: 1998: 820-4.
  • 70 Musen MA. Domain ontologies in software engineering: use of Protege with the EON architecture. Methods Inf Med 1998; 37 4-5 540-50.
  • 71 Mejino JLV, Noy NF, Musen MA, Brinkley JF, Rosse C. Representation of structural relationships in the foundational model of anatomy. In: Proceedings, AMIA Fall Symp. Washington, DC: 2001: 973
  • 72 Martin RF, Mejino JLV, Bowden DM, Brinkley JF, Rosse C. Foundational model of neuroanatomy: implications for the Human Brain Project. In: Proc AMIA Fall Symp. Washington, DC: 2001: 438-42.
  • 73 Gardner D, Knuth KH, Abato M, Erde SM, White T, DeBellis R. et al. Common data model for neuroscience data and data model exchange. J Am Med Assoc 2001; 8 (01) 17-33.
  • 74 Sundsten JW, Conley DM, Ratiu P, Mulligan KA, Rosse C. Digital Anatomist web-based interactive atlases. http://www9.biostr.washington.edu/da.html 2000
  • 75 Brinkley JF, Bradley SW, Sundsten JW, Rosse C. The Digital Anatomist information system and its use in the generation and delivery of Web-based anatomy atlases. Comput Biomed Res 1997; 30: 472-503.
  • 76 Höhne KH, Pflesser B, Riemer M, Schiemann T, Schubert R, Tiede U. A new representation of knowledge concerning human anatomy and function. Nat Med 1995; 1 (06) 506-10.
  • 77 Höhne K, Bomans M, Pommert A, Riemer M, Schiers C, Tiede U. et al. 3-D visualization of tomographic volume data using the generalized voxel model. The Visual Computer 1990; 6 (01) 28-36.
  • 78 Stensaas SS, Millhouse OE. Atlases of the Brain. http://medstat.med.utah.edu/kw/brain_atlas/credits.htm 2001
  • 79 Johnson KA, Becker JA. The Whole Brain Atlas. http://www.med.harvard.edu/AANLIB/home.html 2001
  • 80 Swanson LW. Brain Maps: Structure of the Rat Brain. 2nd ed. New York: Elsevier Science; 1999
  • 81 Martin RF, Bowden DM. Primate Brain Maps: Structure of the Macaque Brain. New York: Elsevier Science; 2001
  • 82 Fougerousse F, Bullen P, Herasse M, Lindsay S, Richard I, Wilson D. et al. Human-mouse differences in the embryonic expression of developmental control genes and disease genes. Hum Mol Genet 2000; 9 (02) 165-73.
  • 83 Rosen GD, Williams AG, Capra JA, Connolly MT, Cruz B, Lu L. et al. The Mouse Brain Library @. www.mbl.org In: Int. Mouse Genome Conference 14. 2000: 166 http://www.nervenet.org/papers/MBLabst2000.html
  • 84 Toga AW, Ambach KL, Schluender S. Highresolution anatomy from in situ human brain. Neuroimage 1994; 1 (04) 334-44.
  • 85 Toga AW, Santori EM, Hazani R, Ambach K. A 3-D digital map of rat brain. Brain Res Bull 1995; 38 (01) 77-85.
  • 86 Toga AW. UCLA Laboratory for Neuro Imaging (LONI). http://www.loni.ucla.edu/ 2001
  • 87 Dhenain M, Ruffins SW, Jacobs RE. Three-dimensional digital mouse atlas using high-resolution MRI. Dev Biol 2001; 232 (02) 458-70. http://mouseatlas.caltech.edu/
  • 88 Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers; 1988
  • 89 Van Essen DC, Drury HA. Structural and functional analysis of human cerebral cortex using a surface-based atlas. J Neurosci 1997; 17 (18) 7079-102.
  • 90 Schaltenbrand G, Warren W. Atlas for Stereotaxy of the Human Brain. Stuttgart: Thieme; 1977
  • 91 Drury HA, Van Essen DC. Analysis of functional specialization in human cerebral cortex using the visible man surface based atlas. Hum Brain Mapp 1997; 5: 233-7.
  • 92 Höhne KH, Bomans M, Riemer M, Schubert R, Tiede U, Lierse W. A volumebased anatomical atlas. IEEE Computer Graphics and Applications. 1992: 72-8.
  • 93 Caviness VS, Meyer J, Makris N, Kennedy DN. MRI-based topographic parcellation of human neocortex: an anatomically specified method with estimate of reliability. J Cogn Neurosci 1996; 8 (06) 566-87.
  • 94 Toga AW, Thompson PW. Maps of the brain. Anat Rec 2001; 265: 37-53.
  • 95 Christensen GE, Miller MI, Vannier MW. Individualizing neuroanatomical atlases using a massively parallel computer. IEEE Computer 1996; 29 (01) 32-8.
  • 96 Kikinis R, Shenton ME, Iosifescu DV, McCarley RW, Saiviroonporn P, Hokama HH. et al. A digital brain atlas for surgical planning, model-driven segmentation, and teaching. IEEE Trans Visualization and Computer Graphics 1996; 2 (03) 232-41.
  • 97 Gee JC, Reivich M, Bajcsy R. Elastically deforming 3D atlas to match anatomical brain images. J Comput Assist Tomogr 1993; 17 (02) 225-36.
  • 98 Kjems U, Strother SC, Anderson JR, Law I, Hansen LK. Enhancing the multivariate signal of 15O water PET studies with a new nonlinear neuroanatomical registration algorithm. IEEE Trans Med Imaging 1999; 18: 301-19. http://hendrix.imm.dtu.dk/software/kjemswarp/kjemswarp.html
  • 99 Bookstein FL, Green WDK. Edgewarp 3D: A preliminary manual. ftp://brainmap.med.umich.edu/pub/edgewarp3.1/manual.html 1998
  • 100 Bookstein FL. Principal warps: thinplate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 1989; 11 (06) 567-85.
  • 101 Thompson P, Toga AW. A surface-based technique for warping three-dimensional images of the brain. IEEE Trans Med Imaging 1996; 15 (04) 402-17.
  • 102 Davatzikos C. Spatial transformation and registration of brain images using elastically deformable models. Comput Vis Image Underst 1997; 66 (02) 207-22. http://ditzel.rad.jhu.edu/papers/cviu97.pdf
  • 103 Van Essen DC, Drury HA, Joshi S, Miller MI. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. Proc Natl Acad Sci 1998; 95: 788-95.
  • 104 Hurdal MK, Stephenson K, Bowers P, Sumners DW, Rottenberg DA. Coordinate systems for conformal cerebellar flat maps. Neuroimage 2000; 11 (05) S467 http://www.pet.med.va.gov:8080/papers/abstracts_posters/HBM2000/mhurdal_HBM2000.html
  • 105 Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K. et al. A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc 2001; 8 (05) 401-30.
  • 106 Evans AC, Collins DL, Neelin P, MacDonald D, Kamber M, Marrett TS. Three-dimensional correlative imaging: applications in human brain mapping. In Thatcher RW, Hallett M, Zeffiro T, John ER, Heurta M. editors Functional Neuroimaging: technical foundations. San Diego: Academic Press; 1994: 145-62.
  • 107 Martin RF, Poliakov AV, Mulligan KA, Corina DP, Ojemann GA, Brinkley JF. Multi-patient mapping of language sites on 3-D brain models. Neuroimage 2000; 11 (05) S534
  • 108 Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L. et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000; 10 (03) 120-31. http://ric.uthscsa.edu/projects/talairachdaemon.html
  • 109 Thompson PM, Toga AW. Detection, visualization and animation of abnormal anatomic structure with a deformable probalistic brain atlas based on random vector field transformations. Med Image Anal 1997; 1: 271-94.
  • 110 Christensen GE, Rabbitt RD, Miller MI. Deformable templates using large deformation kinematics. IEEE Trans Image Process 1996; 5 (10) 1435-47.
  • 111 Dacey D. Primate retina: cell types, circuits and color opponency. Prog Retin Eye Res 1999; 18 (06) 737-63.
  • 112 Ono MS, Kubik S, Abernathy CD. Atlas of the Cerebral Sulci. New York: Thieme Medical Publishers; 1990
  • 113 Bookstein FL. Biometrics and brain maps: the promise of the morphometric synthesis. In Koslow SH, Huerta MF. editors Neuroinformatics: An Overview of the Human Brain Project. Malwah, New Jersey: Lawrence Erlbaum; 1997: 203-54.
  • 114 Ascioli GA. Progress and perspectives in computational neuroanatomy. Anat Rec 1999; 257 (06) 195-207. http://www.krasnow.gmu.edu/ascoli/CNG/TNA/index.htm
  • 115 Toga AW. Brain Atlases. http://www.loni.ucla.edu/Research_Loni/atlases/index.html 2001
  • 116 Weibel WR. Stereological Methods. New York: Academic Press; 1979
  • 117 DeQuardo JR, Keshavan MS, Bookstein FL, Bagwell WW, Green WDK, Sweeney JA. et al. Landmark-based morphometric analysis of first-episode schizophrenia. Biol Psychiatry 1999; 45 (10) 1321-28.
  • 118 Thompson PM, Mega MS, Toga AW. Disease-specific brain atlases. In Mazziotta JC, Toga AW. editors Brain Mapping III: The Disorders. New York: Academic Press; 2001. http://www.loni.ucla.edu/~thompson/PDF/DisChptWeb.pdf
  • 119 Organization for Human Brain Mapping. Annual Conference on Human Brain Mapping. Brighton, United Kingdom. 2001 http://www.academicpress.com/www/journal/hbm2001/
  • 120 Toga AW, Frackowiak RSJ, Mazziotta JC. editors Neuroimage: A Journal of Brain Function. New York: Academic Press; 2001
  • 121 Fox PT. editor Human Brain Mapping. New York: John Wiley & Sons; 2001
  • 122 Heiss WD, Phelps ME. editors Positron emission tomography of the brain. Berlin; New York: Springer-Verlag; 1983
  • 123 Aine CJ. A conceptual overview and critique of functional neuroimaging techniques in humans I. MRI/fMRI and PET. Crit Rev Neurobiol 1995; 9: 229-309.
  • 124 Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec 2001; 265 (02) 54-84.
  • 125 Corina DP, Steury K, Poliakov AV, Martin RF, Mulligan KA, Maravilla K. et al. A comparison of language function derived from cortical stimulation mapping and fMRI: data from object naming. Submitted. 2001
  • 126 Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC. editors Human Brain Function. New York: Academic Press; 1997
  • 127 Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Stastical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189-210. http://www.fil.ion.ucl.ac.uk/spm/
  • 128 Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996; 29: 162-73. http://afni.nimh.nih.gov/afni/index.shtml
  • 129 Hansen LK, Nielsen FA, Toft P, Liptrot MG, Goutte C, Strother SC. et al. Lyngby-modeler’s Matlab toolbox for spatiotemporal analysis of functional neuroimages. Neuroimage 1999; 9 (06) S241 http://www.pet.med.va.gov:8080/distrib/lyngby.html
  • 130 Cohen JD. FisWidgets. http://neurocog. lrdc.pitt.edu/fiswidgets/ 2001
  • 131 Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. J Neurosurg 1989; 71: 316-26.
  • 132 George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitz HA. et al. Mapping function in human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J Clin Neurophysiol 1995; 12 (05) 406-31.
  • 133 Poliakov AV, Albright E, Corina D, Ojemann G, Martin RF, Brinkley JF. Server-based approach to web visualization of integrated 3-D medical image data. In: Proc AMIA Fall Symp. 2001: 533-7.
  • 134 Hurdal MK. A demonstration of cortical flat mapping. http://www.pet.med.va.gov:8080/incweb/circlepack/ 2001
  • 135 Drury H, West B, Van Essen D. CARET daemon. http://stp.wustl.edu/CARETdaemon/CARETdaemon.html 1997
  • 136 Sereno MI. Webcortex: Web interface to cortical surface database. http://cogsci. ucsd.edu/~sereno/webcortex.html 2001
  • 137 Herskovits EH. BRAID: Brain imaging database. http://braid.rad.jhu.edu/ 2001
  • 138 Hadida-Hassan M, Young SJ, Peltier ST, Wong M, Lamont S, Ellisman MH. Webbased telemicroscopy. J Struct Biol 1999; 125: 235-45. http://ncmir.ucsd.edu/CMDA/jsb99.html
  • 139 Koslow SH. Should the neuroscience community make a paradigm shift to sharing primary data?. Nat Neurosci 2000; 3 (09) 863-5.
  • 140 Nature Neuroscience Editorial. A debate over fMRI data sharing. Nat Neurosci 2000; 3 (09) 845-6.
  • 141 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL. GenBank. Nucleic Acids Res 2000; 28 (01) 15-8.
  • 142 Kotter R. Neuroscience databases-tools for exploring brain structure-function relationships. Philos Trans R Soc Lond B Biol Sci. In Press. 2001. http://www. hirn.uni-duesseldorf.de/rk/neurodat.htm
  • 143 Jakobovits R, Soderland S, Taira RK, Brinkley JF. Requirements of a webbased experiment management system. In: Proceedings, AMIA Symposium 2000 Los Angeles. 2000: 374-8.
  • 144 Jakobovits RM, Brinkley JF, Rosse C, Weinberger E. Enabling clinicians, researchers, and educators to build custom web-based biomedical information systems. In: Proc AMIA Fall Symp. 2001: 279-83.
  • 145 Jakobovits R. WIRM: A perl-based application server. Web Techniques. 2000. September 97-100. http://www.webtechniques.com/archives/2000/09/jakobovits/
  • 146 Pelletier M, Latteier A. The Zope Book: New Riders. 2001. http://www.zope.org/Members/michel/ZB/
  • 147 Brinkley JF, Jakobovits RM. UW Brain Project Language Map Experiment Management System. http://tela.biostr.washington.edu/cgi-bin/repos/bmap_repo/main-menu.pl 2001
  • 148 Wong STC, Hoo KS, Knowlton RC, Laxer KD, Cao X, Hawkins RA. Design and applications of a multimodality image data warehouse framework. J Am Med Assoc. In Press. 2001
  • 149 Letovsky SI, Whitehead SHJ, Paik CH, Miller GA, Gerber J, Herskovits EH. et al. A brain-image database for structurefunction analysis. Am J Neuroradiol 1998; 19: 1869-77.
  • 150 Herskovits EH. An architecture for a brain-image database. Methods Inf Med 2000; 39 4-5 291-7.
  • 151 Arbib M. Neural plasticity: data and computational structure. http://wwwhbp.usc.edu/ 2001
  • 152 Gazzaniga MS. The fMRI data center. http://www.fmridc.org/ 2001
  • 153 Herskovits EH, Megalooikonomou V, Davatzikos C, Chen A, Bryan RN, Gerring JP. Is the spatial distribution of brain lesions associated with closed-head injury predictive of subsequent development of attention-deficit/hyperactivity disorder? Analysis with brain-image database. Radiology 1999; 213 (02) 389-94.
  • 154 Beeman DE, Bower JM, De Schutter E, Efthimiadis EN, Goddard N, Leigh J. The GENESIS simulator-based neuronal database. In Koslow SH, Huerta MF. editors Neuroinformatics: An Overview of the Human Brain Project. Malwah, New Jersey: Lawrence Erlbaum; 1997: 57-81. http://www.bbb.caltech.edu/hbp/
  • 155 Miller PL, Nadkarni P, Singer M, Marenco L, Hines M, Shepard G. Integration of multidisciplinary sensory data: a pilot model of the Human Brain Project approach. J Am Med Assoc 2001; 8 (01) 34-48. http://ycmi-hbp.med.yale.edu/senselab/
  • 156 Dashti AE, Ghandeharizadeh S, Stone J, Swanson LW, Thompson RH. Database challenges and solutions in neuroscientific applications. Neuroimage 1997; 5 (02) 97-115.
  • 157 Fox PT, Mikiten S, Davis G, Lancaster JL. Brain Map: A database of human functional brain mapping. In Thatcher RW, Hallett M, Zeffiro T, John ER, Heurta M. editors Functional Neuroimaging. San Diego: Academic Press; 1994: 95-106. http://ric.uthscsa.edu/projects
  • 158 Bowden DM, Robertson JE, Martin RF, Dubach MF, Wu JS, McLean MR. et al. Web-tools for neuroscience based on NeuroNames, a template brain atlas, edgewarp and geographic information systems software. In: Fifth international confernce on functional mapping of the human brain. Heinrich-Heine University; Dusseldorf, Germany: 1999. http://braininfo.rprc.washington.edu/
  • 159 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H. et al. The Protein Data Bank. Nucleic Acids Res 2000; 28: 235-42.
  • 160 Bly BM, Rebbechi D, Grasso G, Hanson SJ. A peer-to-peer database for brain imaging data. In: Hum Brain Mapp. 2001. http://www.academicpress.com/www/journal/hbm2001/11785.htm