Vet Comp Orthop Traumatol 2003; 16(02): 82-87
DOI: 10.1055/s-0038-1632764
Original Research
Schattauer GmbH

Influence of the connecting rod on the biomechanical properties of five external skeletal fixation configurations

D. G. Bronson
1   Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital, Dallas, TX, USA
,
J. D. Ross
1   Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital, Dallas, TX, USA
,
J. P. Toombs
2   Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
,
R. D. Welch
1   Seay Center for Musculoskeletal Research, Texas Scottish Rite Hospital, Dallas, TX, USA
› Institutsangaben
Funding for this project was provided by the Research Fund at Texas Scottish Rite Hospital for Children. IMEX Veterinary, Inc. provided components examined in this manuscript. IMEX Veterinary, Inc. pays royalties to the investigating institution from the sale of some components examined in this manuscript.
Weitere Informationen

Publikationsverlauf

Received 22. Oktober 2002

Accepted 30. November 2002

Publikationsdatum:
22. Februar 2018 (online)

Summary

A recently developed external skeletal fixation system (SK™, IMEX Veterinary, Inc.) utilizes larger diameter connecting rods, therefore overcoming one of the weaknesses of the original Kirschner-Ehmer (KE) system. The purpose of the current study was to compare five typical external fixator constructs in axial compression, torsion, Cranial-Caudal (C-C) and Medial-Lateral (M-L) bending to determine the effect of the larger connecting rods on frame stiffness. The results demonstrate that the larger connecting rod has a significant effect on overall frame stiffness. The use of two or more full-pins, as in the type II and III techniques nullified the contribution of the connecting rod diameter and frame stiffness was more a factor of pin size, number and orientation.

 
  • References

  • 1 Aron DN, Dewey CW. Application and postoperative management of external skeletal fixators. Vet Clin North Am Small Anim Pract 1992; 22: 69-97.
  • 2 Aron DN, Foutz TL, Keller WG, Brown J. Experimental and clinical experience with an IM pin external skeletal fixator tie-in configuration. Vet Comp Orthop Traumatol 1991; 1991: 86-94.
  • 3 Augat P, Margevicius K, Simon J, Wolf S, Suger G, Claes L. Local tissue properties in bone healing: Influence of size and stability of the osteotomy gap. J Orthop Res 1998; 16: 475-81.
  • 4 Behrens F, Johnson W. Unilateral external fixation methods to increase and reduce frame stiffness. Clin Orthop Rel Res 1989; 241: 48-56.
  • 5 Behrens F, Johnson WD, Koch TW, Kovacevic N. Bending stiffness of unilateral and bilateral fixator frames. Clin Orthop Rel Res 1983; 178: 103-9.
  • 6 Bouvy BM, Markel MD, Chelikani S, Egger EL, Piermattei DL, Vanderby R. Ex vivo biomechanics of Kirschner-Ehmer external skeltal fixation applied to canine tibiae. Vet Surg 1993; 22: 194-207.
  • 7 Brighton CT. Principles of fracture healing. Part I: The biology of fracture repair. In: AAOS: Instructional Course Lectures. Murray John A. (eds). The C.V. Mosby Company; St. Louis: 1990: 60-82.
  • 8 Brinker WO, Verstraete MC, Soutas-Little RW. Stiffness studies on various configurations and types of external fixators. J Am Anim Hosp Assoc 1985; 21: 801-8.
  • 9 Brooks DB, Burstein AH, Frankel VH. The biomechanics of torsional fractures: The stress concentration effect of a drill hole. J Bone Joint Surg 1970; 52-A: 507-14.
  • 10 Cheal EJ, Mansmann KA, DiGioia AM, Hayes WC, Perren SM. Role of interfragmentary strain in fracture healing: ovine model of a healing osteotomy. J Orthop Res 1991; 09: 131-42.
  • 11 Claes L, Augat P, Suger G, Wilke H-J. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res 1997; 15: 577-84.
  • 12 Cross AR, Aron DN, Budsberg SC, Foutz TL, Pearman BT, Evans MD. Validation of a finite element model of the Kirschner-Ehmer external skeletal fixation system. Am J Vet Res 2000; 60: 615-20.
  • 13 Edgerton BC, An K-N, Morrey BF. Torsional strength reduction due to cortical defects in bone. J Orthop Res 1990; 08: 851-5.
  • 14 Egger EL. Static strength evaluation of six external skeletal fixation configurations. Vet Surg 1983; 12: 130-6.
  • 15 Egger EL. Complications of external fixation A - problem-oriented approach. Vet Clin North Am Small Anim Pract 1991; 21: 705-33.
  • 16 Egger EL, Rigg DL, Blass CE, Berg RJ, Runyon CL, Wykes PM. Type I biplanar configuration of external skeletal fixation: Application technique in nine dogs and one cat. J Am Vet Med Assoc 1985; 187: 262-6.
  • 17 Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg 1985; 67 (B): 650-5.
  • 18 Goodship AE, Watkins PE, Rigby HS, Kenwright J. The role of fixator frame stiffness in the control of fracture healing. An experimental study. J Biomech 1993; 26: 1027-35.
  • 19 Grundnes O, Reikeras O. Effects of instability on bone healing. Femoral osteotomies studied in rats. ACTA Orthop Scand 1993; 64: 55-8.
  • 20 Hipp JA, Edgerton BC, An K-N, Hayes WC. Structural consequences of transcortical holesin long bones loaded in torsion. J Biomech 1990; 23: 1261-8.
  • 21 Johnson AL, Seitz SE, Smith CW, Johnson JM, Schaeffer DJ. Closed reduction and type-II external fixation of comminuted fractures of the radius and tibia in dogs: 23 cases (1990-1994). J Am Vet Med Assoc 1996; 209: 1445-8.
  • 22 Kenwright J, Gardner T. Mechanical influences on tibial fracture healing. Clin Orthop 1998; 355S: 179-S190.
  • 23 McBroom RJ, Cheal EJ, Hayes WC. Strength reductions from metastatic cortical defects in long bones. J Orthop Res 1988; 06: 369-78.
  • 24 McPherron MA, Schwarz PD, Histand MB. Mechancial evaluation of half-pin (type 1) external skeletal fixation in combination with a single intramedullary pin. Vet Surg 1992; 21: 178-82.
  • 25 Mills ML, Holland M, Cooper R. Use of a type-III trilateral external skeletal fixation device in three deer with comminuted fractures. J Am Vet Med Assoc 2-15-1996; 208: 559-61.
  • 26 Molster A, Gjerdet NR, Raugstad TS, Hvidsten K, Alho A, Bang G. Effect of instability of experimental fracture healing. ACTA Orthop Scand 1982; 53: 521-6.
  • 27 Molster AO, Gjerdet NR. Effects of instability on fracture healing in the rat. ACTA Orthop Scand 1984; 55: 342-6.
  • 28 Norris JL, Kraus KH, O’Leary JP. Effect of supplemental plate on the stiffness of a type I external fixator. Vet Surg 2002; 31: 133-7.
  • 29 Palmer RH, Hulse DA, Hyman WA, Palmer DR. Principles of bone healing and biomechanics of external skeletal fixation. Vet Clin North Am Small Anim Pract 1992; 22: 45-68.
  • 30 Park S-H, O’Connor K, McKellop H, Sarmiento A. The influence of active shear or compressive motion on fracture-healing. J Bone Joint Surg 1998; 80 (A): 868-878.
  • 31 Renegar WR, Leeds EB, Olds RB. The use of the Kirschner-Ehmer splint in clinical orthopedics part I. Long bone and mandibular fractures. The Comp Contin Ed 1982; 04: 381-91.
  • 32 Terjesen T, Johnson E. Effects of fixation stiffness on fracture healing - External fixation of tibial osteotomy in the rabbit. ACTA Orthop Scand 1986; 57: 146-8.
  • 33 Woodard PL, Self J, Calhoun J, Tencer AF, Evans EB. The effect of implant axial and torsional stiffness on fracture healing. J Orthop Trauma 1987; 01: 331-40.