Nuklearmedizin 1988; 27(02): 43-45
DOI: 10.1055/s-0038-1629501
Originalarbeiten — Original Articles
Schattauer GmbH

The Conundrum of Relaxation Times

Das Rätsel der Entspannungszeiten
S. F. Akber
1   From the Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
› Author Affiliations
Further Information

Publication History

Received: 01 July 1987

in revised form: 26 November 1987

Publication Date:
05 February 2018 (online)

The current theories of proton relaxation times fall short of explaining satisfactorily the physical and biological mechanisms responsible for the dissimilarities of relaxation behavior in normal and pathological tissues. An alternative approach to understand these mechanisms is needed. This paper advances the possibility that the dissimilarities of relaxation behavior in normal and pathological tissues is due to the consumption of paramagnetic molecular O2 dissolved in cell-associated water.

Zusammenfassung

Die physikalischen und biologischen Mechanismen, die für das unterschiedliche Relaxationsverhalten von normalem und pathologischem Gewebe verantwortlich sind, werden von den gegenwärtigen Theorien der Protonrelaxationszeiten nur unzureichend erklärt. Um diese Mechanismen zu verstehen, ist ein alternativer Ansatz notwendig. Diese Arbeit verfolgt die Möglichkeit, daß die Unterschiede im Relaxationsverhalten im normalen und pathologischen Gewebe auf die Aufnahmen von paramagnetischen Molekularen im Zellwasser gelösten O2 zurückzuführen ist.

 
  • REFERENCES

  • 1 Alvarez E, Okagaki T, Richart R M. Oxygen consumption of endometrial adenocarcinoma. Am J Obstet Gynecol 1971; 109: 874.
  • 2 Beall P T, Brinkley B R, Chang D C, Hazelwood C F. Microtubule complexes correlated with growth rate and water proton relaxation times in human cancer cell lines. Cancer Res 1982; 42: 4124.
  • 3 Block R E, Maxwell G P, Branam D L. Nuclear spin relaxation in solutions prepared from normal and tumor hepatic tissues. J Natl Cancer Inst 1977; 59: 1731.
  • 4 Bloembergen N, Purcell E M, Pound R V. Relaxation effects in nuclear magnetic absorption. Phys Rev 1948; 73: 679-712.
  • 5 Bottomley P A, Hardy C J, Argersinger R E, Allen-Moore G. A review of H nuclear magnetic resonance relaxation in pathology; Are Tl and T2 diagnostic?. Med Phys 1987; 14: 1.
  • 6 Bydder G M, Goatcher A, Hughes J M B. et al. Effects of oxygen tension on nuclear magnetic resonance spin-lattice relaxation rate of blood in vivo. J Physiol (Lond) 1982; 332: 47-8.
  • 7 George P. The fitness of oxygen. In: King T, Mason H S, Morrison M. eds. Oxidases and related redox systems. New York: John Wiley; 1965: 3-36.
  • 8 Goldsmith M, Koutcher J A, Damadian R. Nuclear magnetic resonance in cancer XII: Application of NMR malignancy index to human lung tumors. Br J Cancer 1977; 36: 235.
  • 9 Hall E. Radiobiology for the radiologist. New York: Harper and Row; 1978
  • 10 Kasturi S R. Physio-chemical aspects of cellular NMR water relaxation in normal and pathologic tissues. Physiol Chem Phys 1985; 17: 387-400.
  • 11 Keeler E K. Clinical application of NMR using FONAR technique in diseases of the breast and lung. In: Telen Wende S. Hrsg. Kernspin-Tomographie in der Medizin. Berlin - Heidelberg - New York: Springer; 1983
  • 12 Krynicki K. Proton spin-lattice relaxation in pure water between 0° C and 100° C. Physica 1966; 32: 167-178.
  • 13 Macbeth R A L, Bekesi J G. Oxygen consumption and anaerobic glycolysis of human malignant and normal tissue. Cancer Res 1962; 22: 244.
  • 14 Ranade S S, Shah S S, Phadke R D, Kasturi S R. Pulsed nuclear magnetic resonance studies of nuclear fractions of normal and malignant tissues. Physiol Chem Phys 1979; 11: 471.
  • 15 Shah S S, Ranade S S, Phadke R S, Kasturi S R. Significance of water proton spinlattice relaxation times in normal and malignant rissues and their subcellular fractions. Magn Res Imaging 1982; 01: 91.
  • 16 Zander R. Cellular oxygen concentration. In: Grote J, Reneau D, Richart R M. eds. Oxygen transport to tissue. New York: Plenum Press; 1975: 463-7.