Kinder- und Jugendmedizin 2010; 10(01): 09-14
DOI: 10.1055/s-0038-1629002
Neonatologie
Schattauer GmbH

Schonende Beatmung in der Neonatologie

Gentle ventilation in neonatology
U. H. Thome
1   Universitätsklinik und Poliklinik für Kinder und Jugendliche Leipzig, Abteilung für Neonatologie
› Author Affiliations
Further Information

Publication History

Eingegangen am: 15 June 2009

angenommen am: 22 September 2009

Publication Date:
25 January 2018 (online)

Zusammenfassung

Bedingt durch ihre Unreife ist die Lunge eines Frühgeborenen nicht gut auf den postnatal notwendigen lebenserhaltenden Gasaustausch vorbereitet. Hauptprobleme sind lange Diffusionsstrecken, Surfactantmangel, Flüssigkeitsüberladung und inadäquate Kontrolle von freien Radikalen und Entzündugsreaktionen. Dadurch können chronische Schäden entstehen, die man unter dem Begriff bronchopulmonale Dysplasie“ zusammenfasst. Besonders schädlich sind große Tidalvolumina und hohe endinspiratorische Volumina, was bei der Steuerung der mechanischen Beat-mung berücksichtigt werden muss. Dieses Ziel kann durch Verwendung einer höheren Beat-mungsfrequenz oder Akzeptieren von höheren CO2-Partialdrucken (permissive Hyperkapnie) erreicht werden. Der Nutzen ist jedoch in klinischen Studien noch nicht eindeutig belegt. Hochfrequenzoszillationsbeatmung war jedoch einer optimierten konventionellen Beatmung nicht überlegen. Ebenso konnte für synchronisierte und volumenkontrollierte Beatmung kein langfristig bedeutsamer Nutzen nachgewiesen werden. Vielversprechend ist jedoch die zunehmend verbreitete nicht invasive Beatmung, mit deren Einführung die Häufigkeiten verschiedener Komplikationen rückläufig waren.

Summary

The immaturity of the preterm lung results in suboptimal function for gas exchange. Chiefly, thick diffusion barriers, surfactant deficiency, fluid overload and inadequate defence mechanisms against free radicals and inflammatory activities lead to lung damage. Chronic lung damange is summarized as “broncho-pulmonary dysplasia”. Most deleterious are large tidal volumes and high end-inspiratory volumes, which must be avoided when selecting settings of mechanical ventilation. This goal can be achieved by adopting high ventilatory rates and strategies accepting higher partial pressures of CO2 (permissive hypercapnia). Benefits and risks, however, have not yet been fully established. High-frequency oscillatory ventilation was not superior to optimized conventional ventilation. Furthermore, synchronized and volume-controlled ventilation have not yet been associated with long-term clinical benefits. Non-invasive ventilation is becoming increasingly popular, and was associated with falling complication rates.

 
  • Literatur

  • 1 Lemons JA, Bauer CR, Oh W. et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 2001; 107: E1.
  • 2 Walsh MC, Wilson-Costello D, Zadell A. et al. Safety, reliability, and validity of a physiologic definition of bronchopulmonary dysplasia. J Perinatol 2003; 23: 451-456.
  • 3 Hakulinen AL, Jaervenpaeae AL, Turpeinen M, Sovijaervi A. Diffusing capacity of the lung in school-aged children born very preterm, with and without bronchopulmonary dysplasia. Pediatr Pulmonol 1996; 21: 353-360.
  • 4 Soll RF. Prophylactic natural surfactant extract for preventing morbidity and mortality in preterm infants (Cochrane Review).. The Cochrane Library 2002
  • 5 Speer CP. New insights into the pathogenesis of pulmonary inflammation in preterm infants. [Review] [89 refs]. Biol Neonate 2001; 79: 205-209.
  • 6 Kotecha S. Cytokines in chronic lung disease of prematurity. Eur J Pediatr 1996; 155: S14-S17.
  • 7 Frank L. Antioxidants, nutrition, and bronchopulmonary dysplasia. Clin Perinatol 1992; 19: 541-562.
  • 8 Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998; 157: 294-323.
  • 9 Frank L, Sosenko IR, Gerdes J. Pathophysiology of lung injury repair: Special features of the immature lung. In: Polin RA, Fox WW. (eds). Fetal and neonatal physiology. Philadelphia: WB Saunders; 1998: 1175-1188.
  • 10 Bjoerklund LJ, Ingimarsson J, Curstedt T. et al. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res 1997; 42: 348-355.
  • 11 Heicher DA, Kasting DS, Harrod JR. Prospective clinical comparison of two methods for mechanical ventilation of neonates: rapid rate and short inspiratory time versus slow rate and long inspiratory time. J Pediatr 1981; 98: 957-961.
  • 12 Oxford region controlled trial of artificial ventilation (OCTAVE) study group.. Multicentre randomised controlled trial of high against low frequency positive pressure ventilation. Arch Dis Child 1991; 66: 770-775.
  • 13 Pohlandt F, Saule H, Schroeder H. et al. Decreased incidence of extra-alveolar air leakage or death prior to air leakage in high versus low rate positive pressure ventilation: results of a randomised seven-centre trial in preterm infants. Eur J Pediatr 1992; 151: 904-909.
  • 14 Carlo WA, Martin RJ. Principles of neonatal assisted ventilation. [Review] [45 refs]. Pediatr Clin N Am 1986; 33: 221-237.
  • 15 Slutsky AS, Kamm RD, Drazen JM. High frequency oscillatory ventilation using tidal volumes smaller than the anatomical dead space. International Anesthesiology Clinics 1983; 21: 161-181.
  • 16 Kurata T, Ohta Y, Kondo T. et al. O2 uptake and CO2 elimination during mechanical ventilation with high frequency oscillation. Tok J Exp Clin Med 1991; 16: 133-143.
  • 17 Thome U, Pohlandt F. Effect of the TI/TE ratio on mean intratracheal pressure in high-frequency oscillatory ventilation. J Appl Physiol 1998; 84: 1520-1527.
  • 18 Gerstmann DR, Fouke JM, Winter DC. et al. Proximal, tracheal, and alveolar pressures during high-frequency oscillatory ventilation in a normal rabbit model. Pediatr Res 1990; 28: 367-373.
  • 19 Fredberg JJ, Glass GM, Boynton BR, Frantz III ID. Factors influencing mechanical performance of neonatal high- frequency ventilators. J Appl Physiol 1987; 62: 2485-2490.
  • 20 McCulloch PR, Forkert PG, Froese AB. Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 1988; 137: 1185-1192.
  • 21 Froese AB, McCulloch PR, Sugiura M. et al. Optimizing alveolar expansion prolongs the effectiveness of exogenous surfactant therapy in the adult rabbit. Am Rev Respir Dis 1993; 148: 569-577.
  • 22 Traverse JH, Korvenranta H, Adams EM. et al. Impairment of hemodynamics with increasing mean airway pressure during high-frequency oscillatory ventilation. Pediatr Res 1988; 23: 628-631.
  • 23 Thome UH, Carlo WA, Pohlandt F. Ventilation strategies and outcome in randomised trials of high frequency ventilation. Arch Dis Child Fetal Neonatal Ed 2005; 90: F466-F473.
  • 24 Kinsella JP, Truog WE, Walsh WF. Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 1997; 131: 55-62.
  • 25 Kraybill EN, Runyan DK, Bose CL, Khan JH. Risk factors for chronic lung disease in infants with birth weights of 751 to 1000 grams. J Pediatr 1989; 115: 115-120.
  • 26 Garland JS, Buck RK, Allred EN, Leviton A. Hypocarbia before surfactant therapy appears to increase bronchopulmonary dysplasia risk in infants with respiratory distress syndrome. Arch Pediatr Adolesc Med 1995; 149: 617-622.
  • 27 Mariani G, Cifuentes J, Carlo WA. Randomized trial of permissive hypercapnia in preterm infants. Pediatrics 1999; 104: 1082-1088.
  • 28 Carlo WA, Stark AR, Wright LL. et al. Minimal ventilation to prevent bronchopulmonary dysplasia in extremely low birthweight infants. J Pediatr 2002; 141: 370-374.
  • 29 Thome UH, Carroll WF, Wu T-J. et al. Outcome of extremely preterm infants randomised at birth to different PaCO2 targets during the first seven days of life. Biol Neonate 2006; 90: 218-225.
  • 30 Fabres J, Carlo WA, Phillips V. et al. Both Extremes of Arterial Carbon Dioxide Pressure and the Magnitude of Fluctuations in Arterial Carbon Dioxide Pressure Are Associated With Severe Intraventricular Hemorrhage in Preterm Infants. Pediatrics 2007; 119: 299-305.
  • 31 The Acute Respiratory Distress Syndrome Network.. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301-1308.
  • 32 Bernstein G, Mannino FL, Heldt GP. et al. Randomized multicenter trial comparing synchronized and conventional intermittent mandatory ventilation in neonates. [see comments]. J Pediatr 1996; 128: 453-463.
  • 33 Baumer JH. International randomised controlled trial of patient triggered ventilation in neonatal respiratory distress syndrome. [see comments]. Arch Dis Child Fetal Neonatal 2000; Ed82: F5-F10.
  • 34 Beresford MW, Shaw NJ, Manning D. Randomised controlled trial of patient triggered and conventional fast rate ventilation in neonatal respiratory distress syndrome. [see comments]. Arch Dis Child Fetal Neonatal 2000; Ed82: F14-F18.
  • 35 Cheema IU, Ahluwalia JS. Feasibility of tidal volume-guided ventilation in newborn infants: a randomized, crossover trial using the volume guarantee modality. Pediatrics 2001; 107: 1323-1328.
  • 36 Herrera CM, Gerhardt T, Claure N. et al. Effects of volume-guaranteed synchronized intermittent mandatory ventilation in preterm infants recovering from respiratory failure. Pediatrics 2000; 110: 529-533.
  • 37 Abd El-Moneim ES, Fuerste HO, Krueger M. et al. Pressure support ventilation combined with volume guarantee versus synchronized intermittent mandatory ventilation: a pilot crossover trial in premature infants in their weaning phase. Pediatr Crit Care Med 2005; 6: 286-292.
  • 38 Cheema IU, Sinha AK, Kempley ST, Ahluwalia JS. Impact of volume guarantee ventilation on arterial carbon dioxide tension in newborn infants: a randomised controlled trial. Early Hum Dev 2007; 83: 183-189.
  • 39 Hummler HD, Engelmann A, Pohlandt F, Franz AR. Volume-controlled intermittent mandatory ventilation in preterm infants with hypoxemic episodes. Intensive Care Med 2006; 32: 577-584.
  • 40 Kosch PC, Hutchinson AA, Wozniak JA. et al. Posterior cricoarytenoid and diaphragm activities during tidal breathing in neonates. J Appl Physiol 1988; 64: 1968-1978.
  • 41 Davis PG, Henderson-Smart DJ. Nasal continuous positive airways pressure immediately after extubation for preventing morbidity in preterm infants [Systematic Review].. Cochrane Database of Systematic Reviews 2006 (1).
  • 42 Davis PG, Lemyre B, De Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation [Systematic Review].. Cochrane Database of Systematic Reviews 2006 (1).
  • 43 De Paoli AG, Davis PG, Lemyre B. Nasal continuous positive airway pressure versus nasal intermittent positive pressure ventilation for preterm neonates: a systematic review and meta-analysis. [Review] [19 refs]. Acta Paediatrica 2003; 92: 70-75.
  • 44 Henderson-Smart DJ, Subramanian P, Davis PG. Continuous positive airway pressure versus theophylline for apnea in preterm infants.. [update in Cochrane Database Syst Rev. 2001; (4): CD001072; PMID: 11687093]. [Review] [2 refs]. Cochrane Database of Systematic Reviews 2000 CD001072.
  • 45 Lemyre B, Davis PG, De Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for apnea of prematurity [Systematic Review].. Cochrane Database of Systematic Reviews 2006 (1).
  • 46 Poets CF, Sens B. Changes in intubation rates and outcome of very low birth weight infants: a population-based study. [see comments]. Pediatrics 1996; 98: 24-27.
  • 47 Kulkarni A, Ehrenkranz RA, Bhandari V. Effect of introduction of synchronized nasal intermittent positive-pressure ventilation in a neonatal intensive care unit on bronchopulmonary dysplasia and growth in preterm infants. Am J Perinatol 2006; 23: 233-240.
  • 48 De Paoli AG, Davis PG, Faber B, Morley CJ. Devices and pressure sources for administration of nasal continuous positive airway pressure (NCPAP) in preterm neonates.. Cochrane Database Syst Rev 2008 CD002977.
  • 49 Mazzella M, Bellini C, Calevo MG. et al. A randomised control study comparing the Infant Flow Driver with nasal continuous positive airway pressure in preterm infants. Arch Dis Child Fetal Neonatal 2001; Ed85: F86-F90.
  • 50 Lee KS, Dunn MS, Fenwick M, Shennan AT. A comparison of underwater bubble continuous positive airway pressure with ventilator-derived continuous positive airway pressure in premature neonates ready for extubation. Biol Neonate 1998; 73: 69-75.
  • 51 Pillow JJ, Hillman N, Moss TJ. et al. Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. Am J Respir Crit Care Med 2007; 176: 63-69.
  • 52 Morley CJ, Davis PG, Doyle LW. et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 2008; 358: 700-708.