Nervenheilkunde 2012; 31(06): 446-449
DOI: 10.1055/s-0038-1628215
Serie iNPH
Schattauer GmbH

Idiopathischer Normaldruck-hydrozephalus

Pathophysiologische KonzepteIdiopathic normal pressure hydrocephaluspathophysiological concepts at a glance
J. Lemcke
1   Klinik für Neurochirurgie, Unfallkrankenhaus Berlin
,
U. Meier
1   Klinik für Neurochirurgie, Unfallkrankenhaus Berlin
› Author Affiliations
Further Information

Publication History

Eingegangen am: 22 November 2011

angenommen am: 30 November 2011

Publication Date:
23 January 2018 (online)

Zusammenfassung

Der idiopathische Normaldruckhydrozephalus (iNPH) ist die einzige demenzielle Erkrankung, die einer neurochirurgischen Therapie zugänglich ist. Aufgrund des demoskopischen Wandels gewinnt der iNPH mit seinem Häufigkeitsgipfel in der achten Lebensdekade zunehmend an Bedeutung. In dieser Übersicht werden die aktuelle Theorie zur Pathophysiologie des iNPH und die wichtigsten Stationen ihrer Entwicklung vorgestellt.

Summary

The idiopathic normal pressure hydrocephalus (iNPH) is the only form of dementia accessible for neurosurgical treatment. As the incidence peaks in the 8th decade of life, the disease becomes increasingly important with the demographic change. The aim of this survey is to give an overview of the recent pathophysiological theory and to portrait milestones of development of this theory.

 
  • Literatur

  • 1 Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with „normal“ cerebrospinal-fluid pressure: a treatable syndrome. N Engl J Med 1965; 273: 117-26.
  • 2 Hakim CA, Hakim R, Hakim S. Normal-pressure hydrocephalus. Neurosurg Clin N Am 2001; 12 (04) 761-73.
  • 3 Brean A, Fredo HL, Sollid S, Muller T, Sundstrom T, Eide PK. Five-year incidence of surgery for idiopathic normal pressure hydrocephalus in Norway. Acta Neurol Scand 2009; 120 (05) 314-6.
  • 4 Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 2002; 36 (06) 281-303.
  • 5 Brecknell JE, Brown JI. Is idiopathic normal pressure hydrocephalus an independent entity?. Acta Neurochir (Wien) 2004; 146 (09) 1003-6.
  • 6 Brown JI, Brecknell JE. Is idiopathic normal pressure hydrocephalus an independent entity?. Acta Neurochir (Wien) 2005; 147 (07) 803-4.
  • 7 Chakravarty A. Unifying concept for Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus – a hypothesis. Med Hypotheses 2004; 63 (05) 827-33.
  • 8 George AE, Holodny A, Golomb J, de Leon MJ. The differential diagnosis of Alzheimer’s disease. Cerebral atrophy versus normal pressure hydrocephalus. Neuroimaging Clin N Am 1995; 5 (01) 19-31.
  • 9 Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, Salton J, Graves W. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry 2000; 68 (06) 778-81.
  • 10 Kapaki EN, Paraskevas GP, Tzerakis NG, Sfagos C, Seretis A, Kararizou E, Vassilopoulos D. Cerebrospinal fluid tau, phospho-tau 181 and beta-amyloid 1-42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. Eur J Neurol 2007; 14 (02) 168-73.
  • 11 Kudo T, Mima T, Hashimoto R, Nakao K, Morihara T, Tanimukai H, Tsujio I, Koike Y, Tagami S, Mori H, Nakamura Y, Tanaka T, Mori K, Takeda M. Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin Neurosci 2000; 54 (02) 199-202.
  • 12 Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, Soekadar S, Richartz E, Koehler N, Bartels M, Buchkremer G, Schott K. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res 2007; 41 (05) 387-94.
  • 13 Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003; 2 (08) 506-11.
  • 14 Silverberg GD, Levinthal E, Sullivan EV, Bloch DA, Chang SD, Leverenz J, Flitman S, Winn R, Marciano F, Saul T, Huhn S, Mayo M, McGuire D. Assessment of low-flow CSF drainage as a treatment for AD: results of a randomized pilot study. Neurology 2002; 59 (08) 1139-45.
  • 15 Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 1965; 2 (04) 307-27.
  • 16 Dandy WE. Experimental hydrocephalus. Ann Surg 1919; 70 (02) 129-42.
  • 17 Di CG, Grove AS. Jr. Evaluation of surgical and spontaneous cerebrospinal fluid shunts by isotope scanning. J Neurosurg 1966; 24 (04) 743-8.
  • 18 Di CG. Observations on the circulation of the cerebrospinal fluid. Acta Radiol Diagn (Stockh) 1966; 5: 988-1002.
  • 19 Kieffer SA, Stadlan EM, D‘Angio GJ. Anatomic studies of the distribution and effects of intrathecal radioactive gold. Acta Radiol Ther Phys Biol 1969; 8 1–2 27-37.
  • 20 Bering EA. Jr. Cerebrospinal fluid. Prog Neurol Psychiatry 1966; 21: 358-73.
  • 21 Bering EA. Jr. Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump. AMA Arch Neurol Psychiatry 1955; 73 (02) 165-72.
  • 22 Bering EA. Jr. Circulation of the cerebrospinal fluid. Demonstration of the choroid plexuses as the generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 1962; 19: 405-13.
  • 23 Dandy WE. Expiration of the choroid plexus of the lateral ventricles in communication hydrocephalus. Ann Surg 1918; 68 (06) 569-79.
  • 24 Wilson CB, Bertan V. Interruption of the anterior choroidal artery in experimental hydrocephalus. Arch Neurol 1967; 17 (06) 614-9.
  • 25 Wilson CB, Bertan V. Role of the anterior choroidal artery in hydrocephalus. Surg Forum 1965; 16: 438-40.
  • 26 Greitz D. The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev 2004; 27 (04) 299-300.
  • 27 Greitz D. Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydro-cephalus. Childs Nerv Syst 2007; 23 (05) 487-9.
  • 28 Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 2004; 27 (03) 145-65.
  • 29 Bateman GA. The reversibility of reduced cortical vein compliance in normal-pressure hydrocephalus following shunt insertion. Neuroradiology 2003; 45 (02) 65-70.
  • 30 Bateman GA, Levi CR, Schofield P, Wang Y, Lovett EC. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology 2008; 50 (06) 491-7.
  • 31 Kiefer M, Eymann R. Clinical proof of the importance of compliance for hydrocephalus pathophysiology. Acta Neurochir Suppl 2010; 106: 69-73.
  • 32 Sood S, Kumar CR, Jamous M, Schuhmann MU, Ham SD, Canady AI. Pathophysiological changes in cerebrovascular distensibility in patients undergoing chronic shunt therapy. J Neurosurg 2004; 100 5 Suppl Pediatrics 447-53.
  • 33 Schuhmann MU, Sood S, McAllister JP, Jaeger M, Ham SD, Czosnyka Z, Czosnyka M. Value of over-night monitoring of intracranial pressure in hydro-cephalic children. Pediatr Neurosurg 2008; 44 (04) 269-79.