Arthritis und Rheuma 2017; 37(04): 239-246
DOI: 10.1055/s-0038-1626484
Original- und Übersichtsarbeiten
Schattauer GmbH

Physiologie des Knochenmetabolismus und Knochenzell-Interaktionen

Physiology of bone metabolism and bone cell interactions
C. Biehl
1   Universitätsklinikum Gießen Marburg, Standort Gießen, Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie – Operative Notaufnahme; Gießen
,
F. Merboth
2   Institut für Experimentelle Unfallchirurgie, Justus-Liebig Universität Gießen, Gießen
,
T. ElKassawna
1   Universitätsklinikum Gießen Marburg, Standort Gießen, Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie – Operative Notaufnahme; Gießen
,
M. Rupp
1   Universitätsklinikum Gießen Marburg, Standort Gießen, Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie – Operative Notaufnahme; Gießen
,
C. Heiß
1   Universitätsklinikum Gießen Marburg, Standort Gießen, Klinik und Poliklinik für Unfall-, Hand- und Wiederherstellungschirurgie – Operative Notaufnahme; Gießen
2   Institut für Experimentelle Unfallchirurgie, Justus-Liebig Universität Gießen, Gießen
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Januar 2018 (online)

Zusammenfassung

Die physiologischen Prozesse am Knochen unterliegen einem steten Wandel und hängen vom Zusammenspiel der verschiedenen Knochenzellen ab. Diese sind über komplexe Regulationsmechanismen miteinander verbunden. Osteoporosemodelle von Klein- und Großtieren ermöglichen das bessere Verständnis dieser Zusammenhänge. Die Schritte der Zellreifung und -differenzierung sind teilweise reversibel, um flexibel auf die Anforderungen reagieren zu können. Der Artikel stellt den aktuellen Stand der Zell-Zell-Interaktionen der Knochenregulation dar.

Summary

The physiological processes on the bone undergo a constant change and depend on the interaction of the different bone cells. These are linked by complex regulatory mechanisms. Osteoporosis models of small and large animals allow a better understanding of these mechanisms. Cell-maturation and -differentiation steps are partly reversible in order to be able to react flexibly to the requirements. The article presents the current status of cell-cell interactions in osteous regulation.

 
  • Literatur

  • 1 Marcus R, Feldman D, Nelson D, Rosen CJ. Fundamentals of Osteoporosis. Elsevier Science 2009
  • 2 Halleen JM, Räisänen SR, Alatalo SL, Väänanen HK. Potential Function for the ROS-Generating Activity of TRACP. J Bone Miner Res 2003. 18 (10)
  • 3 Xiong J, Piemontese M, Onal M. et al. Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. PloS one 2015; 10 (09) e0138189
  • 4 Gross TS, Edwards JL, McLeod KJ, Rubin CT. Strain Gradients Correlate with Sites of Periosteal Bone Formation. J Bone Miner Res 1997; 12 (06) 982-988.
  • 5 Rubin CT, Lanyon LE. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. Journal of orthopaedic research 1987; 5 (02) 300-310.
  • 6 Frost HM. Bone‘s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003; 275 (02) 1081-1101.
  • 7 Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone 1993; 14 (02) 103-109.
  • 8 Heiss C, Govindarajan PS, Schlewitz G. et al. Induction of osteoporosis with its infuence on osteoporotic determinants and their interrelationships in rats by DEXA. Med Sci Monit 2012; 18 (06) 199-207.
  • 9 Chambers TJ, Fuller K. Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact. J Cell Sci 1985; 76: 155-165.
  • 10 Parfitt AM. The mechanism of coupling: a role for the vasculature. Bone 2000; 26 (04) 319-323.
  • 11 Parfitt AM. The Bone Remodeling Compartment: A Circulatory Function for Bone Lining Cells. J Bone Miner Res 2001; 16 (09) 1583-1585.
  • 12 Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 1994; 55 (03) 273-286.
  • 13 Merboth F. Enzym- und immunhistochemische Analyse des zellulären Knochenmetabolismus eines osteoporotischen Schafmodells. Gießen; Justus-Liebig-Universität: 2017
  • 14 Lüllmann-Rauch R. Histologie. 3. ed.. Stuttgart, New York: Thieme; 2009
  • 15 Garg AK. Mosby‘s Dental Dictionary. 3. ed.. Elsevier Health Sciences 2013
  • 16 Lacey DL, Tan HL, Lu J. et al. Osteoprotegerin Ligand Modulates Murine Osteoclast Survival in Vitro and in Vivo. Am J Pathology 2000; 157 (02) 435-448.
  • 17 Bull H, Murray P, Thomas D. et al. Acid phosphatases. J Clin Pathol Mol Pathol 2002; 55: 65-72.
  • 18 Horwood NJ, Elliott J, Martin TJ, Gillespie MT. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 1998; 139 (11) 4743-4746.
  • 19 Gray C, Boyde A, Jones SJ. Topographically induced bone formation in vitro: implications for bone implants and bone grafts. Bone 1996; 18 (02) 115-123.
  • 20 Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12 (01) 17-25.
  • 21 Burgess TL, Qian Y-x, Kaufman S. et al. The Ligand for Osteoprotegerin (OPGL) Directly Activates Mature Osteoclasts. J Cell Biology 1999; 145 (03) 527-538.
  • 22 Simonet WS, Lacey DL, Dunstan CR. et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89 (02) 309-319.
  • 23 Kwon BS, Wang S, Udagawa N. et al. TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J 1998; 12 (10) 845-854.
  • 24 Govindarajan P, Bocker W, El Khassawna T. et al. Bone matrix, cellularity, and structural changes in a rat model with high-turnover osteoporosis induced by combined ovariectomy and a multipledeficient diet. Am J Pathol 2014; 184 (03) 765-777.
  • 25 Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 2005; 11 (02) 76-81.
  • 26 Brabant T. Die Verbindung von Muskel und Knochen unter besonderer Berücksichtigung des höheren Lebensalters. arthritis + rheuma 2015; 35: 212-216.
  • 27 Pederson L, Ruan M, Westendorf JJ. et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proceedings of the National Academy of Sciences of the United States of America 2008; 105 (52) 20764-20769.
  • 28 Ryu J, Kim HJ, Chang E-J. et al. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast– osteoblast coupling. The EMBO Journal 2006; 25: 5840-5851.
  • 29 Martin TJ. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiol Rev 2016; 96 (03) 831-871.
  • 30 Miao D, He B, Jiang Y. et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34. J Clin Invest 2005; 115 (09) 2402-2411.
  • 31 Sharifi M, Ereifej L, Lewiecki EM. Sclerostin and skeletal health. Rev Endocr Metab Disord 2015; 16 (02) 149-156.
  • 32 Peterlik M. Wnt-Signalwege im Knochenstoffwechsel. Osteologie 2011; 20 (03) 197-202.
  • 33 Lerner UH, Ohlsson C. The WNT system: background and its role in bone. J Intern Med 2015; 277 (06) 630-649.
  • 34 Golub EE. Role of Matrix Vesicles in Biomineralization. Biochim Biophys Acta 2009; 1790 (12) 1592-1598.
  • 35 Anderson HC, Sipe JB, Hessle L. et al. Impaired Calcification Around Matrix Vesicles of Growth Plate and Bone in Alkaline Phosphatase- Deficient Mice. Am J of Pathology 2004. 164 (3)
  • 36 Millan JL. The role of phosphatases in the initiation of skeletal mineralization. Calcif Tissue Int 2013; 93 (04) 299-306.
  • 37 Hessle L, Johnson K, Anderson H. et al. Tissuenonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proceedings of the National Academy of Sciences of the United States of America 2002; 99 (14) 9445-9449.
  • 38 Carano A, Schlesinger PH, Athanasou NA. et al. Acid and base effects on avian osteoclast activity. Am J Physiol 1993; 264 (3 Pt 1) C694-C701.
  • 39 Vaananen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J Cell Sci 2000; 113 (03) 377-381.
  • 40 Salo J, Lehenkari P, Mulari M. et al. Removal of osteoclast bone resorption products by transcytosis. Science 1997; 276 5310 270-273.
  • 41 Ljusberg J, Ek-Rylander B, Andersson G. Tartrateresistant purple acid phosphatase is synthesized as a latent proenzyme and activated by cysteine proteinases. Biochem J 1999; 343 (01) 63-69.
  • 42 van der Eerden BC, Hoenderop JG, de Vries TJ. et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proceedings of the National Academy of Sciences of the United States of America 2005; 102 (48) 17507-17512.