Nervenheilkunde 2006; 25(03): 123-128
DOI: 10.1055/s-0038-1626452
Arbeiten zum Schwerpunkt - Theme Articles
Schattauer GmbH

Was können wir aus bildgebenden Verfahren für die motorische Rehabilitation lernen?

Lessons learned from functional imaging with respect to motor rehabilitation
C. Dettmers
1   Kliniken Schmieder Konstanz
,
F. Hamzei
2   Neurologische Klinik, Universitätsklinik Hamburg-Eppendorf
,
M. Rijntjes
3   Neurologische Klinik, Universitätsklinik Freiburg
,
C. Weiller
3   Neurologische Klinik, Universitätsklinik Freiburg
› Author Affiliations
Further Information

Publication History

Publication Date:
19 January 2018 (online)

Zusammenfassung

Einzelbefunde aus den Reorganisationsstudien nach Hirninfarkt machen es schwierig, ein einheitliches und einfaches Reorganisationskonzept zu erkennen. Querschnittsstudien zeigen eine vermehrte Aktivierung in einem bilateralen Netzwerk mit den homologen, kontraläsionalen Strukturen und einer vermehrten Aktivierung um den Infarkt herum. Die Reorganisation läuft phasenhaft ab mit einer frühen Aktivitätsminderung (Diaschisis), gefolgt von einer Hochregulation und Überaktivierung und einer späten Rückkehr zum Ausgangsniveau. Die Phasen sind in der betroffenen und nicht betroffenen Hemisphäre zeitlich versetzt. Studien zum motorischen Lernen zeigen mindestens zwei Phasen. Interessant werden funktionelle bildgebende Verfahren bei der Multiplen Sklerose, da hier schon sehr frühzeitig Reorganisationsphänomene dargestellt werden können.

Summary

A variety of functional imaging studies conducted with post stroke patients – sometimes with contradictory results– are cited and discussed without providing clear and straight forward concepts regarding of reorganization after stroke. Studies concerning motor learning are of paramount importance for rehabilitation although there are incomplete conclusions from research on physiological motor learning. Recent functional imaging studies on multiple sclerosis are of potential interest. They possibly indicate reorganization at an early stage even before structural lesions can be recognized.

 
  • Literatur

  • 1 Carr JH, Shepherd RB. Stroke Rehabilitation: Guidelines for exercise and training. Oxford: Butterworth Heinemann; 2003
  • 2 Celnik PA, Cohen LG. Modulation of motor function and cortical plasticity in health and disease. Rest Neurol Neurosci 2004; 22: 261-8.
  • 3 Chollet F, DiPiero V, Wise RSJ, Brooks DJ, Dolan RJ, Frackowiak RSJ. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 1991; 29: 63-71.
  • 4 Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong K, Kennedy DN, Finklestein SP, Rosen BR. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997; 28: 2518-27.
  • 5 Cramer S, Bastings E. Mapping clinically relevant plasticity after stroke. Neuropharmacology 2000; 39: 842-51.
  • 6 Dettmers C, Teske U, Hamzei F, Uswatte G, Taub E, Weiller C. Modified version of Taub training improves functional outcome after stroke. Arch Phys Med and Rehabil 2005; 86: 204-9.
  • 7 Dettmers C, Hamzei F, Teske U, Buechel C, Weiller C. fMRI discriminates between physiological motor learning and reorganization in a stroke patient. In: Dettmers C, Weiller C. (Hrsg). Update Neurologische Rehabilitation. Bad Honnef: Hippocampus Verlag; 2005: 201-6.
  • 8 Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science 1995; 270: 305-7.
  • 9 Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L. et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002; 33: 1610-7.
  • 10 Floyer-Lea A, Matthews PM. Distinguishable brain activation networks for shortand long-term motor skill learning. J Neurophysiol 2005; 94: 512-8.
  • 11 Gierse A, Dettmers C, Rijntjes M, Rzanny R, Gaser C, Kiebel S, Kaiser W, Weiller C. Interhemispheric accessibility and transfer of motor engrams. In: Dettmers C, Weiller C. (Hrsg). Update Neurologische Rehabilitation. Bad Honnef: Hippocampus Verlag; 2005: 244-52.
  • 12 Hamzei F, Krüger H, Peters M, Ketels G, Rijntjes M, Weiller C. Forced use Therapie der unteren Extremität. Aktuelle Neurologie 2005; 32 4, 212.
  • 13 Hauptmann B, Reinhart E, Brandt SA, Karni A. The predictive value of the leveling off of within session performance for procedural memory consolidation. Cogn Brain Res 2005; 24: 181-9.
  • 14 Jeschke C. Physiotherapie in der neurologischen Therapie. In: Nelles G. (Hrsg). Neurologische Rehabilitation. Stuttgart: Thieme 2004: 61-73.
  • 15 Johansen-Berg H, Rushworth M, Matthews P. A TMS study of the functional significance of ipsilateral motor cortical activation after stroke. Neuroimage 2002; 16: 700.
  • 16 Johansen-Berg H, Dawes H, Guy C. et al. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002; 115: 2731-42.
  • 17 Kaas JH, Qi H-X. The reorganization of the motor system inprimates after the loss of a limb. Rest Neurol Neurosci 2004; 22: 145-52.
  • 18 Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci 1998; 95: 861-8.
  • 19 Liepert J, Tegenthoff M, Malin JP. Changes of cortical motor area size during immobilisation. Electroenceph Clin Neurophysiol 1995; 97: 382-6.
  • 20 Liepert J, Miltner W, Bauder H, Sommer M, Dettmers C, Taub E, Weiller C. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett 1998; 250: 5-8.
  • 21 Liepert J, Hamzei F, Weiller C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve 2000; 23: 1761-3.
  • 22 Liepert J, Bauder H, Miltner WHR, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000; 31: 1210-6.
  • 23 Liepert J. Bedeutung der TMS für die Rehabilitationsforschung. In: Dettmers C, Weiller C. (Hrsg). Update Neurologische Rehabilitation. Bad Honnef: Hippocampus Verlag 2005: 190-200.
  • 24 Matthews PM, Johansen-Berg H, Reddy H. Noninvasive mapping of brain functions and brain recovery: Applying lessons from cognitive neuroscience to neurorehabilitation. Rest Neurol Neurosci 2004; 22: 245-60.
  • 25 Nelles G, Spiekermann G, Jueptner M. et al. Evolution of functional reorganization in hemiplegic stroke: a serial positron emission tomographic activation study. Ann Neurol 1999; 46: 901-9.
  • 26 Nelles G, Jentzen W, Jueptner M, Muller S, Diener HC. Arm training induced brain plasticity in stroke studied with serial positron emission tomography. NeuroImage 2001; 13: 1146-54.
  • 27 Pantano P, Iannetti GD, Caramia F, Mainero C, Di Legge S, Bozzao L, Pozzilli C, Lenzi GL. Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 2002; 125: 1607-15.
  • 28 Pascual-Leone A, Wassermann EM, Sadato N, Hallett M. The role of reading activity on the modulation of motor cortical outputs to the reading hand in Braille readers. Ann-Neurol 1995; 38: 910-5.
  • 29 Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM, Arnold DL. Evidence for adaptive functional changes in the cerbral cortex with axonal injury from multiple sclerosis. Brain 2000; 123: 2314-20.
  • 30 Rijntjes M. Functional imaging in Multiple Sclerosis: Lessons for imaging in stroke and vice versa. Editorial. J Magnetic Resonance Imaging. im Druck..
  • 31 Rijntjes M. Mechanisms of recovery in stroke patients with hemiparesis or aphasia: new insights, old questions and the meaning of therapies. Curr Op Neurol. in press..
  • 32 Rijntjes M, Hobbeling V, Hamzei F, Dohse S, Ketels G, Liepert J, Weiller C. Individual factors in constraint-induced movement therapy after stroke. Neurorehabil Neural Repair 2005; 19: 238-49.
  • 33 Shepherd RB, Carr JH. Scientific basis of neurological physiotherapy. Bridging the gap between science and practice. In: Dettmers C, Weiller C. (Hrsg). Update Neurologische Rehabilitation. Bad Honnef: Hippocampus Verlag 2005: 61-71.
  • 34 Toni I, Ramnani N, Josephs O, Ashburner J, Passingham RE. Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Neuroimage 2001; 14: 1048-57.
  • 35 van Mier HI, Perlmutter JS, Petersen SE. Functional changes in brain activity during acquisition and practice of movement sequences. Motor control 2004; 08: 500-20.
  • 36 Ward NS, Brown MM, Thomson AJ, Frackowiak RSJ. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003; 126: 1430-48.
  • 37 Weiller C, Chollet F, Friston KJ, Wise RSJ, Frackowiak RSJ. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992; 31: 463-72.
  • 38 Weiller C, Ramsay SC, Wise RSJ, Friston KJ, Frackowiak RSJ. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 1993; 33: 181-9.
  • 39 Yousry TA, Berry I, Filippi M. Functional magnetic resonance imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 1998; 64 (Suppl. 01) S85-87.
  • 40 Zemke A, Heagerty P, Lee C, Cramer S. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 2003; 34: E23-28.
  • 41 Carey JR, Kimberley TJ, Leweis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K. Analysis of fMRI and finger tracking training in subjects with chronc stroke. Brain 2002; 125: 773-88.
  • 42 Miltner WHR, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke. A replication. Stroke 1999; 30: 586-92.
  • 43 aub E, Miller NE, Novack TA, Cook EW, Fleming WD, Nepomuceno CS, Connell JS, Crago JE. Technique to improve chronic motor deficits after stroke. Arch Phys Med Rehabil 1993; 74: 347-54.