Kinder- und Jugendmedizin 2007; 7(07): 407-413
DOI: 10.1055/s-0038-1625721
Kinderorthopädie
Schattauer GmbH

Neue Aspekte der orthopädischen Behandlung der infantilen Zerebralparese

New aspects in the orthopedic management of cerebral palsy
Leonhard Döderlein
1   Orthopädische Universitätsklinik Heidelberg, Abteilung Orthopädie II (Direktor: Prof. Dr. med. H. J. Gerner)
› Author Affiliations
Further Information

Publication History

Eingegangen: 06 July 2007

angenommen: 13 July 2007

Publication Date:
10 January 2018 (online)

Zusammenfassung

Die orthopädische Behandlung der infantilen Zerebralparese war bisher durch die operative Korrektur struktureller Deformitäten gekennzeichnet. Die Verfahren bestanden zumeist aus Muskel- und Sehnenverlängerungen, gefolgt von Gipsruhigstellungen und anschließender Apparateversorgung. Das Resultat war in vielen Fällen zwar eine Korrektur, jedoch oftmals ohne funktionelle Verbesserung.

Durch die Einführung von Botulinumtoxin wurde die Forschung zur Zerebralparese aktiviert. Der spastische Muskel ist kürzer, schwächer und steifer, was zu einem Umdenken im konservativen wie auch im operativen Vorgehen führen muss. Jede Muskelverlängerung führt zu weiterer Schwächung, weshalb möglichst versucht werden muss, durch die Kombination konservativer Therapien die Muskellänge zu erhalten und Zeit zu gewinnen.

Unsere Kenntnis der gestörten Bewegung wurde durch die instrumentelle Ganganalyse, die eine objektive Dokumentation ermöglicht, wesentlich erweitert. Neue Wege zur Klassifizierung der Lähmungsbilder erlauben eine bessere Einteilung auch bezüglich der Therapieplanung und -kontrolle.

Zu den konservativen Behandlungsverfahren kamen neben Botulinumtoxin die Baclofenpumpe sowie neue Orthesenkonstruktionen hinzu. Auch auf dem Gebiet der Krankengymnastik zeichnet sich ein Wandel weg von klassischen Methoden hin zur zielorientierten Betrachtungsweise ab. Kräftigungsbehandlungen und laufbandgestützte Lokomotionstrainer haben dabei eine wichtige Bedeutung.

Summary

Orthopedic management of patients with cerebral palsy consisted until recently of surgical corrections of contractures and deformities followed by plaster-immobilisation. Although the legs were mostly straight the functional improvements remained only small.

The introduction of botulinum toxin A into the management of spastic disorders has given a tremendous input into further research on spasticity. The spastic muscle is short, stiff and weak. This fact should induce a change into our surgical strategy. Weakening procedures such as muscle or tendon lengthenings should be critically questioned. It would be advisable to prevent structural contractures as long as possible by deliberately combining conservative treatments including tone reduction, stretch, orthoses and strengthening. The introduction of computer based motion analysis systems has further enlarged our knowledge about spastic movement patterns. New classification systems allow us now to clearly define patient groups and to evaluate all aspects of the disability including quality of life measurements.

New conservative treatments should focus on muscle stretch, muscle strength and conditioning rather than relying on unproven theoretical issues. The inclusion of treadmill training can further improve walking disorders effectively.

 
  • Literatur

  • 1 Ackman JD, Russman BS. Comparing Botulinumtoxin: A with casting for treatment of dynamic equinus in children with cerebral palsy. 2005; Dev Med Child Neurol 47: 620-7.
  • 2 Arnold AS, Liu MQ. The role of estimating muscle-tendon lengths and velocities of the hamstrings in the evaluation and treatment of crouch gait. Gait and Posture 2006; 23: 273-81.
  • 3 Bleck EE. Orthopaedic management of cerebral palsy. Oxford: Mc Keith press; 1987
  • 4 Daltroy LH, Liang MH. The POSNA pediatric musculoskeletal functional health questionnaire. J Pediatr Orthop 1998; 18: 561-71.
  • 5 Damiano DL, Abel MF. Functional outcome of strength training in spastic cerebral palsy. Arch Phys Med Rehabil 1998; 79: 119-25.
  • 6 Damiano DL, Martellotta TL. Deficits in excentric versus concentric torque in children with spastic cerebral palsy. Med Sci Sports Exerc 2001; 33: 117-22.
  • 7 Davids JR, Ounpuu S, De Luca PA, Davis R. Optimization of walking ability of children with cerebral palsy. Instr Course Lect 2004; 53: 511-22.
  • 8 De Luca PA, Davis RB. Alterations in surgical decision making in patients with cerebral palsy based on 3-dimensional gait analysis. J Pediatr Orthop 1997; 17: 608-14.
  • 9 Desloovere K, Molenaers G. Do dynamic and static clinical measurements correlate with gait analysis parameters in children with cerebral palsy. Gait and Posture 2006; 24: 302-13.
  • 10 Dietz V, Berger W. Cerebral palsy and muscle transformation. Dev Med Child Neurol 1995; 37: 180-4.
  • 11 Dobson F, Morris ME. Gait classification in children with cerebral palsy: a systematic review. Gait and Posture 2007; 25: 140-52.
  • 12 Dodd KJ, Taylor NF. A randomized clinical trial of strength training in young people with cerebral palsy. Dev Med Child Neurol 2003; 45 (10) 652-7.
  • 13 Dodd KJ, Foley S. Partial body-weight supported treadmill training can improve walking in children with cerebral palsy: a clinical controlled trial. Dev Med Child Neurol 2007; 49 (02) 101-5.
  • 14 Eliasson AC, Krumlinde-Sundholm L. Effects of constraint induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Dev Med Child Neurol 2005; 47 (04) 266-75.
  • 15 Foran JRH, Barasch I. Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol 2005; 47: 713-17.
  • 16 Fietzek UM, Wiedenhöfer B. et al. Zerebralparese – Übersicht und interdisziplinäre Therapie. Nervenheikunde 2007; 5: 396-404.
  • 17 Friden J, Lieber RL. Spastic muscle cells are shorter and stiffer than normal cells. Muscle and Nerve 2003; 27: 157-64.
  • 18 Gage JR. The treatment of gait problems in cerebral palsy. London: Mc Keith press; 2004
  • 19 Galea M. Outcome assessments in children with cerebral palsy. Dev Med Child Neurol 2007; 49: 165.
  • 20 Gericke TR. Postural management for children with cerebral palsy: consensus statement. Dev Med Child Neurol 2006; 48: 244.
  • 21 Haley SM, Faas RM. New England: Pediatric evaluation of disability inventory: administration manual. 1989
  • 22 Heinen F, Molenaers G. European consensus table on Botulinumtoxin A for children with cerebral palsy. Eur J Ped Neurol 2006; 10: 215-25.
  • 23 Kerr C, Mc Dowell B. Electrical stimulation in cerebral palsy: a randomized controlled trial. Dev Med Child Neurol 2006; 48: 870-6.
  • 24 Kondo I, Hosokawa K. Effectiveness of selective muscle-release surgery for children with cerebral palsy. Dev Med Child Neurol 2004; 46: 540-7.
  • 25 Landgraf JM, Abetz L. Child health questionnaire (CHQ): a user´s manual. Boston, Ma: Health Act; 1999
  • 26 Lieber RL. Skeletal muscle, structure, function an plasticity. 2nd ed.. Philadelphia: Lippincott Williams and Wilkins; 2002
  • 27 Lin JP. The pathophysiology of spasticity and dystonia. New Jersey: Churchill communications; 2000: 11-38.
  • 28 Mao CC, Mc Gill KC. Muscle vibration facilitates orderly recruitment of motor units. Electromyogr and clin neurophys 1990; 30: 245-52.
  • 29 Molenaers G, Desloovere K. The effects of quantitative gait assessment and botulinumtoxin A on musculoskeletal surgery in children with cerebral palsy. J Bone Joint Surg 2006; 88A: 161-70.
  • 30 Narayanan UG. The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy. Current Opin in Pediatr 2007; 19: 38-43.
  • 31 Noonan KA, Haliday S. Interobserver variability of gait analysis in patients with cerebral palsy. J Pediatr Orthop 2003; 23: 279-87.
  • 32 O’Dwyer NJ, Neilson PD. Mechanisms of muscle growth related to muscle contracture in cerebral palsy. Dev Med Child Neurol 1989; 31: 543-52.
  • 33 Perry J. Gait analysis-normal and pathological function. Slack inc Thorofare; 1992
  • 34 Ponten E, Friden J. Spastic frist flexors are more severely affected than wrist extensors in children with cerebral palsy. Dev Med Child Neurol 2005; 47: 384-9.
  • 35 Read HS, Hazlewood ME. Edinburgh visual gait score for use in cerebral palsy. J Pediatr Orthop 2003; 23: 296-301.
  • 36 Rethlefsen S, Kay R. The effects of fixed and articulated ankle foot orthoses on gait patterns in subjects with cerebral palsy. J Pediatr Orthop 1999; 19: 470-4.
  • 37 Rose J, Mc Gill KC. The motor unit in cerebral palsy. Dev Med Child Neurol 1998; 40: 270-7.
  • 38 Rose J, Mc Gill KC. Neuromuscular activation and motor-unit firing characteristics in cerebral palsy. Dev Med Child Neurol 2005; 47: 329-36.
  • 39 Russell DJ, Rosenbaum PL. et al. GMFM- und GMFCS-Messung und Klassifikation motorischer Funktionen. Deutsche Ausgabe von Heinen F und Kirschner JB. Bern: Hans Huber; 2006
  • 40 Shortland AP, Harris CA. Architecture of the medial gastrocnemius in children with spastic diplegia. Dev Med Child Neurol 2002; 44: 158-63.
  • 41 Shortland AP, Fry NR. Changes to medial gastrocnemius architecture after surgical intervention in spastic diplegia. Dev Med Child Neurol 2004; 46: 667-73.
  • 42 Skaggs DL, Rethlefsen SA. Variability in gait analysis interpretation. J Pediatr Orthop 2000; 20: 759-64.
  • 43 Tardieu G, Tardieu C. Muscle hypoextensibility in children with cerebral palsy, part II: Therapeutic implications. Arch Phys Med Rehabil 1982; 63: 103-7.
  • 44 Thom H. Die infantilen Zerebralparesen. Stuttgart: Thieme; 1982
  • 45 Vaz DV, Mancini MC. Muscle stiffness and strength and their relation to hand function in children with hemiplegic cerebral palsy. Dev Med Child Neurol 2006; 48: 728-33.
  • 46 Westberry DE, Davids JR. Effectiveness of serial stretch casting for resistant or recurrant knee flexion contractures following hamstring lengthening in children with cerebral palsy. J Pediatr Orthop 2006; 26 (01) 109-14.
  • 47 White H, Jenkins JC. Clinically prescribed orthoses demonstrate an increase in velocity of gait in children with cerebral palsy: a retrospective review. Dev Med Child Neurol 2002; 44: 227-32.
  • 48 Wren TAL, Hara R. Changes in architecture of the medial gastrocnemius with equines contracture and surgical lengthening, Abstract, GCMASMeeting. 2007